首页> 外文期刊>IEEE Transactions on Computers >Systematic Data Placement Optimization in Multi-Cloud Storage for Complex Requirements
【24h】

Systematic Data Placement Optimization in Multi-Cloud Storage for Complex Requirements

机译:满足复杂需求的多云存储中的系统数据放置优化

获取原文
获取原文并翻译 | 示例

摘要

Multi-cloud storage can provide better features such as availability and scalability. Current works use multiple cloud storage providers with erasure coding to achieve certain benefits including fault-tolerance improving or vendor lock-in avoiding. However, these works only use the multi-cloud storage in ad-hoc ways, and none of them considers the optimization issue in general. In fact, the key to optimize the multi-cloud storage is to effectively choose providers and erasure coding parameters. Meanwhile, the data placement should satisfy system or application developers’ requirements. As developers often demand various objectives to be optimized simultaneously, such complex requirement optimization cannot be easily fulfilled by ad-hoc ways. This paper presents Triones, a systematic model to formally formulate data placement in multi-cloud storage by using erasure coding. Firstly, Triones addresses the problem of data placement optimization by applying non-linear programming and geometric space abstraction. It could satisfy complex requirements involving multi-objective optimization. Secondly, Triones can effectively balance among different objectives in optimization and is scalable to incorporate new ones. The effectiveness of the model is proved by extensive experiments on multiple cloud storage providers in the real world. For simple requirements, Triones can achieve 50 percent access latency reduction, compared with the model in LibCloud. For complex requirements, Triones can improve fault-tolerance level by 2 and reduce access latency and vendor lock-in level by 3070 percent and 49.85 percent respectively with about 19.19 percent more cost, compared with the model only optimizing cost in Scalia.
机译:多云存储可以提供更好的功能,例如可用性和可伸缩性。当前的工作使用多个具有擦除编码的云存储提供商来实现某些好处,包括提高容错能力或避免供应商锁定。但是,这些作品仅以临时方式使用多云存储,并且它们都没有普遍考虑优化问题。实际上,优化多云存储的关键是有效选择提供商并删除编码参数。同时,数据放置应满足系统或应用程序开发人员的要求。由于开发人员经常要求同时优化各种目标,因此无法通过临时方式轻松实现这种复杂的需求优化。本文介绍了Triones,这是一种通过使用擦除编码来正式制定多云存储中数据放置位置的系统模型。首先,Triones通过应用非线性编程和几何空间抽象解决了数据放置优化的问题。它可以满足涉及多目标优化的复杂要求。其次,Triones可以在优化的不同目标之间有效地平衡,并且可以扩展以合并新目标。通过在现实世界中的多个云存储提供商上进行的广泛实验证明了该模型的有效性。对于简单的要求,与LibCloud中的模型相比,Triones可以将访问延迟减少50%。对于复杂的需求,与仅在Scalia中优化成本的模型相比,Triones可以将容错级别提高2倍,并将访问延迟和供应商锁定级别分别降低3070%和49.85%,而成本则提高约19.19%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号