首页> 外文期刊>Computing and informatics >OPTIMIZING DATA PLACEMENT FOR COST EFFECTIVE AND HIGH AVAILABLE MULTI-CLOUD STORAGE
【24h】

OPTIMIZING DATA PLACEMENT FOR COST EFFECTIVE AND HIGH AVAILABLE MULTI-CLOUD STORAGE

机译:优化具有成本效益和高可用多云存储的数据展示位置

获取原文
获取原文并翻译 | 示例

摘要

With the advent of big data age, data volume has been changed from trillionbyte to petabyte with incredible speed. Owing to the fact that cloud storage offers the vision of a virtually infinite pool of storage resources, data can be stored and accessed with high scalability and availability. But a single cloud-based data storage has risks like vendor lock-in, privacy leakage, and unavailability. Multi-cloud storage can mitigate these risks with geographically located cloud storage providers. In this storage scheme, one important challenge is how to place a user's data cost-effectively with high availability. In this paper, an architecture for multi-cloud storage is presented. Next, a multi-objective optimization problem is defined to minimize total cost and maximize data availability simultaneously, which can be solved by an approach based on the non-dominated sorting genetic algorithm II (NSGA-II) and obtain a set of non-dominated solutions called the Pareto-optimal set. Then, a method is proposed which is based on the entropy method to determine the most suitable solution for users who cannot choose one from the Pareto-optimal set directly. Finally, the performance of the proposed algorithm is validated by extensive experiments based on real-world multiple cloud storage scenarios.
机译:随着大数据时代的出现,数据量已从万亿字节以令人难以置信的速度从千兆字节转换为Petabyte。由于云存储提供了几乎无限存储资源池的愿景,可以通过高可扩展性和可用性来存储和访问数据。但是基于云的数据存储具有诸如供应商锁定,隐私泄漏和不可用的风险。多云存储可以使用地理位置的云存储提供商缓解这些风险。在此存储方案中,一个重要的挑战是如何具有高可用性的成本有效地放置用户的数据。本文介绍了多云存储的架构。接下来,定义多目标优化问题以使总成本最小化并同时最大化数据可用性,这可以通过基于非主导分类遗传算法II(NSGA-II)的方法来解决并获得一组非主导的解决方案称为Pareto-Optimal集合。然后,提出了一种基于熵方法的方法,以确定无法直接从帕累托最佳集合中选择一个的用户的最合适的解决方案。最后,通过基于现实世界多云存储场景的大量实验验证了所提出的算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号