首页> 外文期刊>Computers, IEEE Transactions on >Trust Evaluation in Online Social Networks Using Generalized Network Flow
【24h】

Trust Evaluation in Online Social Networks Using Generalized Network Flow

机译:使用广义网络流的在线社交网络信任评估

获取原文
获取原文并翻译 | 示例

摘要

In online social networks (OSNs), to evaluate trust from one user to another indirectly connected user, the trust evidence in the trusted paths (i.e., paths built through intermediate trustful users) should be carefully treated. Some paths may overlap with each other, leading to a unique challenge of , i.e., how to aggregate the trust values of multiple dependent trusted paths. OSNs bear the characteristic of high clustering, which makes the path dependence phenomenon common. Another challenge is through propagation, i.e., how to propagate trust along a trusted path, considering the possible decay in each node. We analyze the similarity between trust propagation and network flow, and convert a trust evaluation task with path dependence and trust decay into a generalized network flow problem. We propose a modified flow-based trust evaluation scheme , in which we address path dependence using network flow, and model trust decay with the leakage associated with each node. Experimental results, with the real social network data sets of Epinions and Advogato, demonstrate that GFTrust can predict trust in OSNs with a high accuracy, and verify its preferable properties.
机译:在在线社交网络(OSN)中,为了评估从一个用户到另一个间接连接的用户的信任,应谨慎对待信任路径(即,通过中间信任用户建立的路径)中的信任证据。一些路径可能彼此重叠,从而导致独特的挑战,即如何聚合多个从属可信路径的信任值。 OSN具有高度聚类的特征,这使得路径依赖现象变得普遍。另一个挑战是通过传播,即考虑到每个节点中可能的衰减,如何沿着可信路径传播信任。我们分析了信任传播和网络流量之间的相似性,并将具有路径依赖性和信任衰减的信任评估任务转换为广义的网络流量问题。我们提出了一种改进的基于流的信任评估方案,该方案使用网络流来解决路径依赖性,并使用与每个节点相关的泄漏对信任衰减进行建模。实验结果以及Epinions和Advogato的真实社交网络数据集,表明GFTrust可以高精度预测对OSN的信任,并验证其首选属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号