首页> 外文期刊>Future generation computer systems >Generating trusted graphs for trust evaluation in online social networks
【24h】

Generating trusted graphs for trust evaluation in online social networks

机译:生成可信图以用于在线社交网络中的信任评估

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel trust framework to address the issue of "Can Alice trust Bob on a service?" in large online social networks (OSNs). Many models have been proposed for constructing and calculating trust. However, two common shortcomings make them less practical, especially in large OSNs: the information used to construct trust is (1) usually too complicated to get or maintain, that is, it is resource consuming; and (2) usually subjective and changeable, which makes it vulnerable to vicious nodes. With those problems in mind, we focus on generating small trusted graphs for large OSNs, which can be used to make previous trust evaluation algorithms more efficient and practical. We show how to preprocess a social network (PSN) by developing a simple and practical user-domain-based trusted acquaintance chain discovery algorithm through using the small-world network characteristics of online social networks and taking advantage of "weak ties". Then, we present how to build a trust network (BTN) and generate a trusted graph (GTG) with the adjustable width breadth-first search algorithms. To validate the effectiveness of our work and to evaluate the quality of the generated trusted graph, we conduct many experiments with the real data set from Epinions.com. Our work is the first that focuses on generating small trusted graphs for large online social networks, and we explore the stable and objective information (such as domain) for inferring trust.
机译:我们提出了一种新颖的信任框架,以解决“爱丽丝能否在服务上信任鲍勃?”的问题。在大型在线社交网络(OSN)中。已经提出了许多用于构建和计算信任的模型。但是,有两个普遍的缺点,使它们不太实用,尤其是在大型OSN中:用于建立信任的信息通常是(1)太复杂而难以获取或维护,即资源消耗; (2)通常是主观的和可变的,这使其容易受到恶性节点的攻击。考虑到这些问题,我们专注于为大型OSN生成小型可信任图,可用于使以前的信任评估算法更加有效和实用。我们展示了如何通过利用在线社交网络的小世界网络特征并利用“弱联系”来开发一种简单实用的基于用户域的可信相识链发现算法来预处理社交网络(PSN)。然后,我们介绍如何使用可调宽度广度优先搜索算法构建信任网络(BTN)并生成信任图(GTG)。为了验证我们工作的有效性并评估所生成可信图的质量,我们使用Epinions.com的真实数据集进行了许多实验。我们的工作是第一个专注于为大型在线社交网络生成小型可信任图的工作,并且我们探索了稳定和客观的信息(例如域)来推断信任。

著录项

  • 来源
    《Future generation computer systems》 |2014年第2期|48-58|共11页
  • 作者单位

    School of Information Science and Engineering, Central South University, Changsha, Hunan Province 410083, PR China,Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA;

    School of Information Science and Engineering, Central South University, Changsha, Hunan Province 410083, PR China;

    Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Trusted graph; Trust evaluation; Online social network; Small-world network; Weak tie;

    机译:可信图;信任评估;在线社交网络;小世界网络;弱领带;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号