首页> 外文期刊>Computers, IEEE Transactions on >Constant-Time Discrete Gaussian Sampling
【24h】

Constant-Time Discrete Gaussian Sampling

机译:恒定时间离散高斯采样

获取原文
获取原文并翻译 | 示例

摘要

Sampling from a discrete Gaussian distribution is an indispensable part of lattice-based cryptography. Several recent works have shown that the timing leakage from a non-constant-time implementation of the discrete Gaussian sampling algorithm could be exploited to recover the secret. In this paper, we propose a constant-time implementation of the Knuth-Yao random walk algorithm for performing constant-time discrete Gaussian sampling. Since the random walk is dictated by a set of input random bits, we can express the generated sample as a function of the input random bits. Hence, our constant-time implementation expresses the unique mapping of the input random-bits to the output sample-bits as a Boolean expression of the random-bits. We use bit-slicing to generate multiple samples in batches and thus increase the throughput of our constant-time sampling manifold. Our experiments on an Intel i7-Broadwell processor show that our method can be as much as 2.4 times faster than the constant-time implementation of cumulative distribution table based sampling and consumes exponentially less memory than the Knuth-Yao algorithm with shuffling for a similar level of security.
机译:从离散的高斯分布中采样是基于格的密码学必不可少的部分。最近的几项工作表明,可以利用离散高斯采样算法的非恒定时间实现的定时泄漏来恢复秘密。在本文中,我们提出了用于执行恒定时间离散高斯采样的Knuth-Yao随机游走算法的恒定时间实现。由于随机游走是由一组输入随机位决定的,因此我们可以将生成的样本表示为输入随机位的函数。因此,我们的恒定时间实现将输入随机位到输出采样位的唯一映射表示为随机位的布尔表达式。我们使用位切片来批量生成多个样本,从而提高了恒定时间采样歧管的吞吐量。我们在Intel i7-Broadwell处理器上进行的实验表明,与基于累积分布表的采样的恒定时间实现相比,我们的方法可以快2.4倍之多,并且与经过类似改组的Knuth-Yao算法相比,所消耗的内存成倍减少安全性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号