首页> 外文期刊>Computers & Graphics >Packed-Memory Quadtree: A cache-oblivious data structure for visual exploration of streaming spatiotemporal big data
【24h】

Packed-Memory Quadtree: A cache-oblivious data structure for visual exploration of streaming spatiotemporal big data

机译:Packed-Memory Quadtree:一种用于数据流时空大数据的可视化探索的超高速缓存数据结构

获取原文
获取原文并翻译 | 示例

摘要

The visual analysis of large multidimensional spatiotemporal datasets poses challenging questions regarding storage requirements and query performance. Several data structures have recently been proposed to address these problems that rely on indexes that pre-compute different aggregations from a known-a-priori dataset. Consider now the problem of handling streaming datasets, in which data arrive as one or more continuous data streams. Such datasets introduce challenges to the data structure, which now has to support dynamic updates (insertions/deletions) and rebalancing operations to perform self reorganizations. In this work, we present the Packed-Memory Quadtree (PMQ), a novel data structure designed to support visual exploration of streaming spatiotemporal datasets. PMQ is cache-oblivious to perform well under different cache configurations. We store streaming data in an internal index that keeps a spatiotemporal ordering over the data following a quadtree representation, with support for real-time insertions and deletions. We validate our data structure under different dynamic scenarios and compare to competing strategies. We demonstrate how PMQ could be used to answer different types of visual spatiotemporal range queries of streaming datasets. (C) 2018 Elsevier Ltd. All rights reserved.
机译:大型多维时空数据集的可视化分析提出了有关存储需求和查询性能的具有挑战性的问题。最近已经提出了几种数据结构来解决这些问题,这些数据结构依赖于从已知先验数据集中预计算不同聚合的索引。现在考虑处理流数据集的问题,其中数据作为一个或多个连续数据流到达。这样的数据集给数据结构带来了挑战,数据结构现在必须支持动态更新(插入/删除)和重新平衡操作以执行自我重组。在这项工作中,我们介绍了压缩内存四叉树(PMQ),这是一种新颖的数据结构,旨在支持可视化探索流时空数据集。 PMQ忽略了缓存,无法在不同的缓存配置下表现良好。我们将流数据存储在一个内部索引中,该索引在遵循四叉树表示形式后保持数据的时空顺序,并支持实时插入和删除。我们在不同的动态场景下验证我们的数据结构,并与竞争策略进行比较。我们演示了如何使用PMQ来回答流数据集的不同类型的视觉时空范围查询。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号