首页> 外文期刊>Computers & Graphics >Adaptive reconstruction of freeform objects with 3D SOM neural network grids
【24h】

Adaptive reconstruction of freeform objects with 3D SOM neural network grids

机译:利用3D SOM神经网络网格自适应重构自由形式对象

获取原文
获取原文并翻译 | 示例

摘要

There are several open problems that are viewed as a bottleneck in the reverse engineering process: (1) The topology is unknown; therefore, point connectivity relations are undefined. (2) The fitted surface must satisfy global and local shape preservation criteria, which are undefined explicitly. The reconstruction is based on parameterization and fitting stages. However, the above problems are influenced mainly by the parameterization. To overcome the above problems, the neural network self-organizing map (SOM) method is proposed for creating a 3D parametric grid. The main advantage of the SOM method is that it detects the orientation of the grid and the position of the sub-boundaries. Then through an adaptive process the neural network grid is converged to the sampled shape. The SOM method is applied directly on a 3D grid and avoids projection anomalies, which are common to other methods. For the surface fitting stage the random surface error correction fitting method, which is based on the SOM method, was developed and implemented.
机译:在逆向工程过程中,有几个未解决的问题被视为瓶颈:(1)拓扑未知;因此,点连接关系是不确定的。 (2)拟合的表面必须满足全局和局部形状保留标准,但未明确定义。重建基于参数化和拟合阶段。但是,上述问题主要受到参数化的影响。为了克服上述问题,提出了一种神经网络自组织图(SOM)方法来创建3D参数网格。 SOM方法的主要优点是它可以检测网格的方向和子边界的位置。然后,通过自适应过程,神经网络网格收敛到采样形状。 SOM方法直接应用于3D网格,并避免了其他方法常见的投影异常。在表面拟合阶段,开发并实现了基于SOM方法的随机表面误差校正拟合方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号