首页> 外文期刊>Computers & Graphics >The J_1~a triangulation: An adaptive triangulation in any dimension
【24h】

The J_1~a triangulation: An adaptive triangulation in any dimension

机译:J_1〜a三角剖分:任意维度的自适应三角剖分

获取原文
获取原文并翻译 | 示例

摘要

Spatial sampling methods have acquired great popularity due to the number of applications that need to triangulate portions of space in various dimensions. One limitation of the current techniques is the handling of the final models, which are large, complex and need to register neighborhood relationships explicitly. Additionally, most techniques are limited to Euclidean bi-dimensional or tri-dimensional spaces and many do not handle adaptive refinement well. This work presents a novel method for spatial decomposition based on simplicial meshes (the J_1~a triangulation) that is generally defined for Euclidean spaces of any dimension and is intrinsically adaptive. Additionally, it offers algebraic mechanisms for the decomposition itself and for indexing of neighbors that allow to recover all the information on the resulting mesh via a set of rules. With these mechanisms it is possible to save storage space by calculating the needed information instead of storing it.
机译:由于需要对空间维度的各个部分进行三角剖分的应用程序数量众多,因此空间采样方法获得了广泛的欢迎。当前技术的局限性在于最终模型的处理,该模型庞大,复杂并且需要显式注册邻居关系。另外,大多数技术限于欧几里德的二维或三维空间,许多技术不能很好地适应自适应性。这项工作提出了一种基于简单网格(J_1〜a三角剖分)的空间分解新方法,该简单网格通常是针对任何尺寸的欧几里德空间定义的,并且本质上是自适应的。此外,它为分解本身和邻居索引提供了代数机制,允许通过一组规则来恢复所得网格上的所有信息。利用这些机制,可以通过计算所需信息而不是存储信息来节省存储空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号