首页> 外文期刊>Computers & geosciences >Assessing and visualizing uncertainty of 3D geological surfaces using level sets with stochastic motion
【24h】

Assessing and visualizing uncertainty of 3D geological surfaces using level sets with stochastic motion

机译:使用具有随机运动的水平集评估和可视化3D地质表面的不确定性

获取原文
获取原文并翻译 | 示例

摘要

For many geoscience applications, prediction requires building complex 3D surface models. Because of such complexity, often only a single model is built, possibly with a small set of variants to represent the uncertainty. Recent advancement in implicit modeling has made the construction of 3D geological models simpler; however, automatic assessment and visualization of uncertainty constrained by input geological rules and data constraints is still an active research topic. In this paper, we propose a new method that directly assesses and visualizes the uncertainty of geological surfaces by the means of stochastic motion. We represent the geological surfaces as the addition of stochastic implicit conceptual models and residual functions subject to the constraints of data and geological age relationships. Two sampling approaches to create the stochastic motion are proposed: Monte Carlo and Markov chain Monte Carlo (McMC). The uncertainty is assessed by independent realizations drawn by Monte Carlo sampling. The uncertainty is visualized by a "smooth" movie of gradually evolving geological surfaces that have the same stationary distribution as Monte Carlo, sampled by Markov chain Monte Carlo (McMC). This idea is integrated into the level set equation. Level sets are an ideal way to represent mathematically complex surfaces without explicit grid representations, thereby having the advantage of avoiding tedious topological computations such as defining the connectivity of a surface. We illustrate this new idea with simple synthetic 3D examples, taking the constraints of data and geological age relationships into consideration. Finally, we illustrate the idea using a synthetic data set from a copper deposit, where dense drillholes constrain an ore body with seven different lithologies. Our method provides a direct assessment and visualization of the uncertainty of 3D geological surfaces.
机译:对于许多地球科学应用,预测需要构建复杂的3D表面模型。由于这种复杂性,通常仅会建立一个模型,可能会有少量变体来表示不确定性。隐式建模的最新进展使3D地质模型的构建更加简单。然而,受输入地质规则和数据约束条件约束的不确定性的自动评估和可视化仍然是一个活跃的研究主题。在本文中,我们提出了一种通过随机运动直接评估和可视化地质表面不确定性的新方法。我们将地质表面表示为受数据和地质年龄关系约束的随机隐式概念模型和残差函数的添加。提出了两种创建随机运动的采样方法:蒙特卡洛和马尔可夫链蒙特卡洛(McMC)。不确定性通过蒙特卡洛抽样得出的独立实现进行评估。通过马尔可夫链蒙特卡洛(McMC)采样的,具有与蒙特卡洛相同的固定分布的逐渐演化的地质表面的“平滑”影片可以看到不确定性。这个想法被整合到水平集方程中。水平集是在没有显式网格表示的情况下表示数学上复杂的曲面的理想方法,因此具有避免繁琐的拓扑计算(例如定义曲面的连通性)的优点。我们通过简单的合成3D示例说明了这一新想法,并考虑了数据和地质年代关系的约束。最后,我们使用来自铜矿床的综合数据集来说明这一想法,在该矿床中密集的钻孔将矿体约束为七种不同的岩性。我们的方法可以直接评估和可视化3D地质表面的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号