首页> 外文期刊>Computers,environment and urban systems >Application of airborne remote sensing data on mapping local climate zones: Cases of three metropolitan areas of Texas, U.S.
【24h】

Application of airborne remote sensing data on mapping local climate zones: Cases of three metropolitan areas of Texas, U.S.

机译:机载遥感数据在绘制局部气候区的地图中的应用:以美国德克萨斯州的三个大都市区为例

获取原文
获取原文并翻译 | 示例

摘要

Urban and vegetation morphology profiles are important factors in local climate-related studies, but they are not as easily measured as land cover information to study urban landscape at metropolitan area. This study aims to develop a GIS-based Local Climate Zones (LCZs) mapping scheme to map and compare the LCZs for three major metropolitans in Texas: Dallas-Fort Worth (DFW), Austin, and San Antonio. Based on an analysis of the land cover and urban morphology, variables including land cover, height of roughness elements, building surface fraction, pervious surface fraction (PSF), and land use planning codes were generated and selected as LCZs classification properties. Then we designed the LCZs mapping scheme with decision-making algorithm was built for LCZs mapping. The key findings of LCZs of our study areas are that: 1) Most of the urbanized area are categorized into LCZ "open" types (characterized by building surface fraction of 15-40% and pervious surface fraction of 30-60%) for all three metropolitan areas with different proportions and spatial diversity; 2) LCZ D Low plants is dominant in areas surrounding DFW, while LCZ A Dense trees and LCZ D Low plants are dominant in Austin and San Antonio with clear regional contrast; 3) LCZs maps are in accordance with the underlying regional environment of the areas. Our study indicated that LiDAR-derived products can support LCZs mapping to identify urban morphological information and standardize the mapping scheme for further comparative studies of metropolitan areas.
机译:城市和植被的形态特征是当地与气候有关的研究的重要因素,但要研究大都市区的城市景观,它们不如土地覆盖信息那么容易测量。这项研究旨在开发一种基于GIS的局部气候区(LCZ)映射方案,以绘制和比较德克萨斯州的三个主要城市:达拉斯-沃思堡(DFW),奥斯丁和圣安东尼奥的LCZ。在分析土地覆盖物和城市形态的基础上,生成了包括土地覆盖物,粗糙度元素的高度,建筑物表面分数,透水表面分数(PSF)和土地利用规划代码在内的变量,并将其选择为LCZ的分类属性。然后我们设计了具有决策算法的LCZs映射方案,为LCZs映射建立了决策算法。我们研究区域的LCZ的主要发现是:1)大多数城市化区域被归类为LCZ“开放”类型(特征为建筑表面分数为15-40%,透水表面分数为30-60%)对于三个具有不同比例和空间多样性的都会区; 2)LCZ D Low植物在DFW周围地区占主导地位,而LCZ A Dense树和LCZ D Low植物在奥斯丁和圣安东尼奥占主导地位,区域差异明显; 3)LCZ地图符合该区域的基础区域环境。我们的研究表明,源自LiDAR的产品可以支持LCZ映射,以识别城市形态信息并标准化映射方案,以用于大城市地区的进一步比较研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号