首页> 外文期刊>Computers, Environment and Urban Systems >Cluster detection in uncertain point distributions: a comparison of four methods
【24h】

Cluster detection in uncertain point distributions: a comparison of four methods

机译:不确定点分布中的聚类检测:四种方法的比较

获取原文
获取原文并翻译 | 示例

摘要

Uncertainty is unavoidable in spatial data. Though this fact is widely recognized in the GIS community, it is often assumed in spatial analysis that spatial data are accurate and thus analyses of the data are reliable, which is usually not the case. It is necessary to discuss from both theoretical and practical viewpoints how uncertainty in spatial data affects the results of spatial analysis. To fill the gap in the research, this paper discusses the accuracy of spatial analysis based on uncertain spatial data, focusing on cluster detection in point distributions. Four methods of cluster detection in uncertain point distributions are proposed: (1) centroid method; (2) minimum method; (3) maximum method; and (4) statistical method. They are evaluated in terms of their accuracy and efficiency of computation through numerical simulations. Some empirical findings are shown which are useful for choosing a method of cluster detection and estimating its accuracy.
机译:在空间数据中不可避免地存在不确定性。尽管这个事实已在GIS社区中得到广泛认可,但在空间分析中通常认为空间数据是准确的,因此对数据的分析是可靠的,通常情况并非如此。有必要从理论和实践角度讨论空间数据的不确定性如何影响空间分析的结果。为了填补研究空白​​,本文讨论了基于不确定空间数据的空间分析的准确性,重点是点分布中的聚类检测。提出了四种不确定点分布的聚类检测方法:(1)质心法; (2)最小法; (3)最大方法; (4)统计方法。通过数值模拟对它们的准确性和计算效率进行了评估。显示了一些经验发现,这些发现对于选择聚类检测方法和估计其准确性很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号