首页> 外文OA文献 >Comparison of Multivariate Outlier Detection Methods for Nearly Elliptical Distributions
【2h】

Comparison of Multivariate Outlier Detection Methods for Nearly Elliptical Distributions

机译:几乎椭圆分布的多变量异常检测方法的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, the performance of outlier detection methods has been evaluated with symmetrically distributed datasets. We choose four estimators, viz. modified Stahel-Donoho (MSD) estimators, blocked adaptive computationally efficient outlier nominators, minimum covariance determinant estimator obtained by a fast algorithm, and nearest-neighbour variance estimator, which are known for their good performance with elliptically distributed data, for practical applications in national survey data processing. We adopt the data model of multivariate skew-t distribution, of which only the direction of the main axis is skewed and contaminated with outliers following another probability distribution for evaluation. We conducted Monte Carlo simulation under the data distribution to compare the performance of outlier detection. We also explore the applicability of the selected methods for several accounting items in small and medium enterprise survey data. Accordingly, it was found that the MSD estimators are the most suitable.
机译:在本文中,已经使用对称分布的数据集进行了异常检测方法的性能。我们选择四个估算器,viz。改进的Stahel-Donoho(MSD)估算器,阻止了自适应计算有效的异常值提升器,通过快速算法获得的最小协方差决定因子和最近的邻居方差估算器,以其具有椭圆分布数据的良好性能,为国家的实际应用而闻名调查数据处理。我们采用多元歪斜分布的数据模型,其中只有主轴的方向偏斜并污染了另一种概率分布的异常值以进行评估。我们在数据分布下进行了Monte Carlo仿真,以比较了异常值检测的性能。我们还探讨所选方法在中小企业调查数据中的几个会计项目的适用性。因此,发现MSD估计器是最合适的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号