首页> 外文期刊>Computers & Digital Techniques, IET >Accelerated LiDAR data processing algorithm for self-driving cars on the heterogeneous computing platform
【24h】

Accelerated LiDAR data processing algorithm for self-driving cars on the heterogeneous computing platform

机译:加速LIDAR数据处理算法在异构计算平台上的自动驾驶汽车

获取原文
获取原文并翻译 | 示例

摘要

In recent years, light detection and ranging (LiDAR) has been widely used in the field of self-driving cars, and the LiDAR data processing algorithm is the core algorithm used for environment perception in self-driving cars. At the same time, the real-time performance of the LiDAR data processing algorithm is highly demanding in self-driving cars. The LiDAR point cloud is characterised by its high density and uneven distribution, which poses a severe challenge in the implementation and optimisation of data processing algorithms. In view of the distribution characteristics of LiDAR data and the characteristics of the data processing algorithm, this study completes the implementation and optimisation of the LiDAR data processing algorithm on an NVIDIA Tegra X2 computing platform and greatly improves the real-time performance of LiDAR data processing algorithms. The experimental results show that compared with an Intel (R) Core (TM) i7 industrial personal computer, the optimised algorithm improves feature extraction by nearly 4.5 times, obstacle clustering by nearly 3.5 times, and the performance of the whole algorithm by 2.3 times.
机译:近年来,光检测和测距(LIDAR)已广泛应用于自动驾驶汽车领域,LIDAR数据处理算法是用于自动驾驶汽车环境感知的核心算法。同时,LIDAR数据处理算法的实时性能在自动驾驶汽车中非常苛刻。 LIDAR点云的特点是其高密度和不均匀的分布,这在数据处理算法的实施和优化方面构成了严峻的挑战。鉴于LIDAR数据的分布特性和数据处理算法的特征,本研究完成了LIDAR数据处理算法在NVIDIA TEGRA X2计算平台上的实现和优化,大大提高了LIDAR数据处理的实时性能算法。实验结果表明,与英特尔(R)核心(TM)I7工业个人计算机相比,优化的算法通过近4.5倍,障碍物聚类,近3.5倍,以及整个算法的性能将特征提取改善了2.3倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号