首页> 外文期刊>Concurrency, practice and experience >A novel data partitioning algorithm for dynamic energy optimization on heterogeneous high-performance computing platforms
【24h】

A novel data partitioning algorithm for dynamic energy optimization on heterogeneous high-performance computing platforms

机译:异构高性能计算平台动态能量优化的新型数据分区算法

获取原文
获取原文并翻译 | 示例

摘要

Energy is one of the most important objectives for optimization on modern heterogeneous high-performance computing (HPC) platforms. The tight integration of multicore CPUs with accelerators such as graphical processing units (GPUs) and Xeon Phi coprocessors in these platforms presents several challenges to the optimization of multithreaded data-parallel applications for energy. In this work, the problem of optimization of data-parallel applications on heterogeneous HPC platforms for dynamic energy throughworkload distributionis formulated. We propose a workload partitioning algorithm to solve this problem. It employs load-imbalancing technique to determine the workload distribution minimizing the dynamic energy consumption of the parallel execution of an application. The inputs to the algorithm are discrete dynamic energy profiles of individual computing devices. The profiles are practically constructed using an approach that accurately models the energy consumption by execution of a hybrid scientific data-parallel application on a heterogeneous platform containing different computing devices such as CPU, GPU, and Xeon Phi. The proposed algorithm is experimentally analyzed using two multithreaded data-parallel applications, matrix multiplication and 2D fast Fourier transform. The load-imbalanced solutions provided by the algorithm achieve significant dynamic energy reductions for the two applications (in average by 130% and 44%, respectively) compared with the load-balanced solutions.
机译:能源是在现代异构高性能计算(HPC)平台上优化的最重要目标之一。多核CPU与诸如图形处理单元(GPU)和Xeon Phi协处理器等加速器的多核CPU的紧密集成对多线程数据并行应用的优化进行了几个挑战。在这项工作中,通过Worknolload分布的动态能量的异构HPC平台上的数据并行应用的优化问题。我们提出了一种工作负载分区算法来解决这个问题。它采用负载不平衡技术来确定工作负载分布最小化应用程序的并行执行的动态能耗。算法的输入是各个计算设备的离散动态能量分布。实际上使用一种方法来使用一种方法构造,即通过在包含不同计算设备(如CPU,GPU和Xeon PHI)的异构平台上,精确地模拟能量消耗的方法。使用两个多线程数据并行应用,矩阵乘法和2D快速傅里叶变换进行实验分析所提出的算法。与负载平衡溶液相比,该算法提供的负载 - 不平衡解决方案可实现两种应用的显着动态能量减少(分别平均为130%和44%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号