首页> 外文期刊>Computers and Geotechnics >Mass-gravity-scaling technique to enhance computational efficiency of explicit numerical methods for quasi-static problems
【24h】

Mass-gravity-scaling technique to enhance computational efficiency of explicit numerical methods for quasi-static problems

机译:大规模重力缩放技术,提高准静态问题的显式数值方法计算效率

获取原文
获取原文并翻译 | 示例

摘要

Large deformation numerical analysis adopting explicit integration scheme is commonly employed in geotechnical analysis to simulate quasi-static problems involving large soil deformations. The computational time for the conduct of such analysis is often very time consuming particularly for complex 3-dimensional soil-structure interaction problems. As an extension to the mass-scaling technique, a mass-gravity-scaling (MGS) technique is proposed in this study to improve the computational efficiency substantially. By scaling the material density and model gravity correspondingly, the soil initial stress state that is essential for realistic soil response can be maintained. This enables the increase in the critical time step resulting in a significant reduction in computational time. Three quasi-static large soil deformation geotechnical problems involving T-bar penetration, spudcan-pile interaction, and pile-reinforced slope are presented to illustrate the application of the MGS technique simulated in finite element (Coupled Eulerian-Lagrangian and Updated Lagrangian) and finite difference methods. It is established that an appropriate scaling factor should be chosen by considering a trade-off between computational time and accuracy of analysis. For selected problems, a hybrid-MGS technique can be employed by selectively applying different scaling factors over specific domains to improve the accuracy and efficiency of the solution technique.
机译:采用明确集成方案的大变形数值分析通常用于岩土学分析,以模拟涉及大土变形的准静态问题。这种分析的计算时间通常是非常耗时的,特别是对于复杂的三维土结构相互作用问题。作为对质量缩放技术的延伸,在该研究中提出了一种大规模重力缩放(MGS)技术,以提高计算效率。通过相应地缩放材料密度和模型重力,可以保持对现实土壤反应至关重要的土壤初始应力状态。这使得临界时间步长的增加导致计算时间显着降低。提出了三种准静态大型土壤变形岩土问题,涉及T-Bar渗透,刺耳堆相互作用和桩加强斜率,以说明MGS技术在有限元(耦合Eulerian-Lagrangian和更新拉格朗日)和有限公司中的应用差异方法。建立应通过考虑计算时间和分析准确性之间的权衡来选择适当的缩放因子。对于所选问题,通过在特定域中选择性地应用不同的缩放因子来采用混合MGS技术,以提高解决方案技术的准确性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号