首页> 外文期刊>Computers and Geotechnics >Evaluation of interface shear behavior of GFRP soil nails with a strain- transfer model and distributed fiber-optic sensors
【24h】

Evaluation of interface shear behavior of GFRP soil nails with a strain- transfer model and distributed fiber-optic sensors

机译:用应变传递模型和分布式光纤传感器评估GFRP土钉的界面剪切行为

获取原文
获取原文并翻译 | 示例

摘要

A glass fiber reinforced polymer (GFRP) material is a newly developed material for slope reinforcement. In this study, distributed optical fiber sensors are developed to characterize the interface shear stress strain behavior in GFRP soil nails with a strain-transfer model. The GFRP bar with a diameter of 40 mm was used as a reinforcing element in a soil slope subjected to excavations. A newly distributed fiber optic sensors are developed to measure the axial strains of the GFRP reinforcement which was then inserted into a drilled hole together with pressure grouting. The calibration of distributed fiber optic sensors indicated that the strains along the GFRP bar can be accurately measured by the distributed sensors. An analytical strain-transfer model is developed and then verified with a finite element model. The comparisons indicate that the strain-transfer model could be able to obtain the shear strain and stress at the cement grout soil interface from arbitrary strain of the GFRP bar. Finally, a field project study is conducted for the condition assessment of a GFRP soil nail with the interface shear stress at different excavation depths. The potential failure surface is identified at the position where the maximum shear stress occurs, that is, at the point around 4.5 m away from the soil nail head. Results in terms of the shear stress are able to detect the active and passive zones of the soil nail. A further analysis indicates that the health condition of the GFRP soil nail can be determined with the distributed fiber sensors and strain-transfer model.
机译:玻璃纤维增​​强聚合物(GFRP)材料是一种新开发的用于边坡增强的材料。在这项研究中,开发了分布式光纤传感器以使用应变传递模型来表征GFRP土钉中的界面剪切应力应变行为。直径为40 mm的GFRP钢筋在开挖的土壤坡中用作加固元件。开发了一种新分布的光纤传感器来测量GFRP增强材料的轴向应变,然后将其与压力灌浆一起插入钻孔中。分布式光纤传感器的校准表明,沿着GFRP钢筋的应变可以由分布式传感器精确测量。建立了解析应变传递模型,然后用有限元模型进行了验证。比较表明,应变传递模型能够从GFRP筋的任意应变获得水泥浆土界面处的剪切应变和应力。最后,进行了一个现场项目研究,以评估在不同开挖深度下具有界面剪应力的GFRP土钉的状态。在最大剪切应力发生的位置,即距土钉头约4.5 m的位置,确定潜在的破坏面。根据剪应力得出的结果能够检测出土钉的活动区域和活动区域。进一步的分析表明,可以使用分布式纤维传感器和应变传递模型来确定GFRP土钉的健康状况。

著录项

  • 来源
    《Computers and Geotechnics》 |2018年第3期|180-190|共11页
  • 作者

    Xu D. S.; Liu H. B.; Luo W. L.;

  • 作者单位

    Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Civil Engn & Mech, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China;

    Guangzhou Univ, Sch Civil Engn, Guangzhou 510006, Guangdong, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    BOTDA; GFRP; Soil nail; Interface shear transfer; Condition assessment;

    机译:BOTDA;GFRP;土钉;界面剪切传递;状态评估;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号