首页> 外文期刊>Computer vision and image understanding >Simultaneous tracking of multiple body parts of interacting persons
【24h】

Simultaneous tracking of multiple body parts of interacting persons

机译:同时跟踪交互人的多个身体部位

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a framework to simultaneously segment and track multiple body parts of interacting humans in the presence of mutual occlusion and shadow. The framework uses multiple free-form blobs and a coarse model of the human body. The color image sequence is processed at three levels: pixel level, blob level, and object level. A Gaussian mixture model is used at the pixel level to train and classify individual pixel based on color. Relaxation labeling in an attribute relational graph (ARG) is used at the blob level to merge the pixels into coherent blobs and to represent inter-blob relations. A twofold tracking scheme is used that consists of blob-to-blob matching in consecutive frames and blob-to-body-part association within a frame. The tracking scheme resembles multi-target, multi-association tracking (MMT). A coarse model of the human body is applied at the object level as empirical domain knowledge to resolve ambiguity due to occlusion and to recover from intermittent tracking failures. The result is 'ARG-MMT': 'attribute relational graph based multi-target, multi-association tracker.' The tracking results are demonstrated for various sequences including 'punching,' 'hand-shaking,' 'pushing,' and 'hugging' interactions between two people. This ARG-MMT system may be used as a segmentation and tracking unit for a recognition system for human interactions.
机译:本文提出了一个框架,可以在相互遮挡和遮挡的情况下同时分割和跟踪交互人类的多个身体部位。该框架使用多个自由形式的斑点和人体的粗略模型。彩色图像序列在三个级别上处理:像素级别,斑点级别和对象级别。高斯混合模型用于像素级别,以基于颜色训练和分类单个像素。属性关系图(ARG)中的松弛标记用于斑点级别,以将像素合并为相干斑点并表示斑点间关系。使用了双重跟踪方案,该方案由连续帧中的斑点到斑点匹配以及一帧内的斑点到身体部位关联组成。跟踪方案类似于多目标,多关联跟踪(MMT)。在对象级别将人体的粗略模型用作经验领域知识,以解决由于遮挡引起的歧义并从间歇性跟踪失败中恢复。结果是“ ARG-MMT”:“基于关系图的多目标,多关联跟踪器”。跟踪结果针对各种序列进行了演示,包括两个人之间的“打孔”,“握手”,“推动”和“拥抱”交互。该ARG-MMT系统可以用作用于人类交互的识别系统的分割和跟踪单元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号