首页> 外文期刊>Computer vision and image understanding >Accurate appearance-based Bayesian tracking for maneuvering targets
【24h】

Accurate appearance-based Bayesian tracking for maneuvering targets

机译:基于外观的精确贝叶斯跟踪,可操纵目标

获取原文
获取原文并翻译 | 示例

摘要

We propose a tracking algorithm that combines the Mean Shift search in a Particle Filtering framework and a target representation that uses multiple semi-overlapping color histograms. The target representation introduces spatial information that accounts for rotation and anisotropic scaling without compromising the flexibility typical of color histograms. Moreover, the proposed tracker can generate a smaller number of samples than Particle Filter as it increases the particle efficiency by moving the samples toward close local maxima of the likelihood using Mean Shift. Experimental results show that the proposed representation improves the robustness to clutter and that, especially on highly maneuvering targets, the combined tracker outperforms Particle Filter and Mean Shift in terms of accuracy in estimating the target size and position while generating only 25% of the samples used by Particle Filter.
机译:我们提出了一种跟踪算法,该算法结合了“粒子滤波”框架中的“均值漂移”搜索和使用多个半重叠颜色直方图的目标表示形式。目标表示引入了考虑旋转和各向异性缩放的空间信息,而不会损害颜色直方图的典型灵活性。此外,所提出的跟踪器与“粒子过滤器”相比,可以生成更少的样本,因为它可以通过使用“均值偏移”将样本移向似然的接近局部最大值来提高粒子效率。实验结果表明,提出的表示法提高了对杂波的鲁棒性,尤其是在机动性强的目标上,组合跟踪器在估计目标大小和位置的精度方面优于粒子滤波和均值漂移,而仅生成了25%的样本通过粒子过滤器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号