首页> 外文期刊>Computer vision and image understanding >An Iterative Multi-scale Tensor Voting Scheme For Perceptual Grouping Of Natural Shapes In Cluttered Backgrounds
【24h】

An Iterative Multi-scale Tensor Voting Scheme For Perceptual Grouping Of Natural Shapes In Cluttered Backgrounds

机译:杂乱背景下自然形状的感知分组的迭代多尺度张量投票方案

获取原文
获取原文并翻译 | 示例

摘要

Grouping processes, which "organize" a given data by eliminating the irrelevant items and sorting the rest into groups, each corresponding to a particular object, can provide reliable pre-processed information to higher level computer vision functions, such as object detection and recognition. In this paper, we consider the problem of grouping oriented segments in highly cluttered images. In this context, we have developed a general and powerful method based on an iterative, multiscale tensor voting approach. Segments are represented as second-order tensors and communicate with each other through a voting scheme that incorporates the Gestalt principles of visual perception. The key idea of our approach is removing background segments conservatively on an iterative fashion, using multi-scale analysis, and re-voting on the retained segments. We have performed extensive experiments to evaluate the strengths and weaknesses of our approach using both synthetic and real images from publicly available datasets including the Williams and Thornber's fruit-texture dataset [L. Williams, Fruit and texture images. 2008 (last viewed in July 2008)] and the Berkeley segmentation dataset [C.F.P. Arbelaez, D. Martin, The berkeley segmentation dataset and benchmark. 2008 (last viewed in July 2008)]. Our results and comparisons indicate that the proposed method improves segmentation results considerably, especially under severe background clutter. In particular, we show that using the iterative multiscale tensor voting approach to post-process the posterior probability map, produced by segmentation methods, improves boundary detection results in 84% of the grayscale test images in the Berkeley segmentation benchmark.
机译:通过消除不相关的项并将其余部分分类(每个组对应于一个特定对象)来“组织”给定数据的分组过程可以为更高级别的计算机视觉功能(例如,对象检测和识别)提供可靠的预处理信息。在本文中,我们考虑将高度混乱的图像中的定向片段分组的问题。在这种情况下,我们基于迭代的多尺度张量投票方法开发了一种通用且功能强大的方法。段表示为二阶张量,并通过合并了格式塔视觉感知原理的投票方案相互通信。我们方法的关键思想是使用多尺度分析以迭代方式保守地删除背景细分,然后对保留的细分进行重新投票。我们已经进行了广泛的实验,使用来自威廉姆斯和桑伯水果纹理数据集[L.威廉姆斯,水果和纹理图像。 2008(最近查看于2008年7月)和伯克利细分数据集[C.F.P. Arbelaez,D。Martin,伯克利细分数据集和基准。 2008(最近查看于2008年7月)]。我们的结果和比较结果表明,所提出的方法可以显着提高分割效果,尤其是在严重的背景杂乱情况下。特别地,我们表明,使用迭代多尺度张量投票方法对通过分割方法生成的后验概率图进行后处理,可以改善伯克利分割基准中84%的灰度测试图像的边界检测结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号