首页> 外文期刊>IEEE transactions on automation science and engineering >Iterating Tensor Voting: A Perceptual Grouping Approach for Crack Detection on EL Images
【24h】

Iterating Tensor Voting: A Perceptual Grouping Approach for Crack Detection on EL Images

机译:迭代张量投票:EL图像裂纹检测的感知分组方法

获取原文
获取原文并翻译 | 示例

摘要

The surface of a multicrystal solar cell shows multiple crystal grains of random shapes and sizes. It creates an inhomogeneous texture in the surface, which brings great difficulty to automatic crack detection of polycrystalline solar surface. As a perceptual grouping approach, tensor voting can extract curvilinear structures such as lines and curves from noisy, binary data in 2-D or 3-D, without invoking specific object or model. However, traditional tensor voting can be susceptible to the gap problem and structural noise. To address the problems mentioned above, a new iterative tensor voting algorithm is presented, which efficacy bases on iterative refinements of the curvilinear structures. By combining the proximity and continuity of Gestalt principles, in each iteration step, a new decay function is redefined according to the difference of angle between the voter and receiver to rebuild the voting field, which makes the points that lie on curvilinear structures vote more information (a bigger tensor) to the ones with the same attribute. The proposed method can solve the gap problem and is robust to structural noises. The experimental results show that the proposed method can detect crack on the inhomogeneous textured surface and achieve an average detection rate of 95.2% on the industrial data set. Note to Practitioners-Automatic vision-based defect detection on the solar cell is difficult due to inhomogeneous texture and low contrast between defects and background in the surface. In order to solve these problems, by combining the proximity and continuity of Gestalt principles, this article proposed a new iterative tensor voting algorithm which can refine the curvilinear structures with iterations. Experiments have shown that the proposed method can detect crack under the interference of inhomogeneous texture and complex background.
机译:多晶体太阳能电池的表面表示多个随机形状和尺寸的晶粒。它在表面上产生了不均匀的纹理,这带来了极难以自动裂纹检测多晶太阳能表面。作为感知分组方法,张量票可以提取曲线结构,例如从2-D或3-D中的噪声,二进制数据中的线条和曲线,而不调用特定对象或模型。然而,传统的张量票可以容易受到间隙问题和结构噪声的影响。为了解决上述问题,提出了一种新的迭代张量投票算法,其曲线结构的迭代改进的功效碱基。通过组合Gestalt原理的接近度和连续性,在每个迭代步骤中,根据选民和接收器之间的角度之间的差异重新定义新的衰减功能,以重建投票字段,这使得曲线结构的点达到更多信息(一个更大的张量)到具有相同属性的那些。该方法可以解决差距问题,并且对结构噪声具有鲁棒性。实验结果表明,该方法可以检测不均匀纹理表面上的裂缝,在工业数据集上达到95.2%的平均检测率。注意对于从业者 - 太阳能电池的自动视觉缺陷检测是由于表面不均匀的质地和表面之间的缺陷和背景之间的对比度难以困难。为了解决这些问题,通过组合盖尔原理的接近和连续性,本文提出了一种新的迭代张量投票算法,其可以用迭代细化曲线结构。实验表明,该方法可以在不均匀纹理和复杂背景的干扰下检测裂缝。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号