首页> 外文期刊>Computer vision and image understanding >Dimensionality reduction using a Gaussian Process Annealed Particle Filterfor tracking and classification of articulated body motions
【24h】

Dimensionality reduction using a Gaussian Process Annealed Particle Filterfor tracking and classification of articulated body motions

机译:使用高斯过程退火粒子滤波器进行降维,以跟踪和分类关节运动

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a framework for 3D articulated human body tracking and action classification. The method is based on nonlinear dimensionality reduction of high-dimensional data space to low dimensional latent space. Human body motion is described by concatenation of low-dimensional manifolds that characterize different motion types. We introduce a body pose tracker thats uses the learned mapping function from latent space to body pose space. The trajectories in the latent space provide low dimensional representations of body pose sequences representing a specific action type. These trajectories are used to classify human actions. The approach is illustrated on the HumanEval and HumanEvall datasets, as well as on other datasets that include scenarios of interactions between people. A comparison to other methods is presented. The tracker is shown to be robust when classifying individual actions and is also capable of the harder task of classifying interactions between people.
机译:本文提出了用于3D关节式人体跟踪和动作分类的框架。该方法基于从高维数据空间到低维潜在空间的非线性降维。人体运动是通过连接表征不同运动类型的低维歧管来描述的。我们介绍一种人体姿势跟踪器,该跟踪器使用从潜在空间到人体姿势空间的学习映射功能。潜在空间中的轨迹提供了代表特定动作类型的身体姿势序列的低维表示。这些轨迹用于对人类行为进行分类。在HumanEval和HumanEvall数据集以及包括人与人之间交互场景的其他数据集上都说明了该方法。提出了与其他方法的比较。跟踪器在对单个动作进行分类时显示出强大的功能,并且能够对人与人之间的互动进行分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号