首页> 外文期刊>Computer vision and image understanding >Manifold surface reconstruction of an environment from sparse Structure-from-Motion data
【24h】

Manifold surface reconstruction of an environment from sparse Structure-from-Motion data

机译:基于稀疏的动感结构数据的环境的歧管表面重构

获取原文
获取原文并翻译 | 示例

摘要

The majority of methods for the automatic surface reconstruction of an environment from an image sequence have two steps: Structure-from-Motion and dense stereo. From the computational standpoint, it would be interesting to avoid dense stereo and to generate a surface directly from the sparse cloud of 3D points and their visibility information provided by Structure-from-Motion. The previous attempts to solve this problem are currently very limited: the surface is non-manifold or has zero genus, the experiments are done on small scenes or objects using a few dozens of images. Our solution does not have these limitations. Furthermore, we experiment with hand-held or helmet-held catadioptric cameras moving in a city and generate 3D models such that the camera trajectory can be longer than one kilometer.
机译:从图像序列自动对环境进行表面重建的大多数方法有两个步骤:运动结构和密集立体。从计算的角度来看,避免密集的立体感并直接从稀疏的3D点云及其由“移动结构”提供的可见性信息生成表面将是很有趣的。当前解决该问题的先前尝试非常有限:该表面是非流形或具有零属,该实验是使用几十个图像在小场景或对象上进行的。我们的解决方案没有这些限制。此外,我们对在城市中移动的手持式或头盔式折反射式摄像机进行了实验,并生成3D模型,使摄像机的轨迹可以长于一公里。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号