首页> 外文会议>Second Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization amp; Transmission. >Incremental Reconstruction of Manifold Surface from Sparse Visual Mapping
【24h】

Incremental Reconstruction of Manifold Surface from Sparse Visual Mapping

机译:稀疏视觉映射中流形表面的增量重建

获取原文
获取原文并翻译 | 示例

摘要

Automatic image-based-modeling usually has two steps: Structure from Motion (SfM) and the estimation of a triangulated surface. The former provides camera poses and a sparse point cloud. The latter usually involves dense stereo. From the computational standpoint, it would be nice to avoid dense stereo and estimate the surface from the sparse cloud directly. Furthermore, it would be useful for online applications to update the surface while the camera is moving in the scene. This paper deals with both requirements: it introduces an incremental method which reconstructs a surface from a sparse cloud estimated by incremental SfM. The context is new and difficult since we ensure the resulting surface to be manifold at all times. The manifold property is important since it is needed by differential operators involved in surface refinements. We have experimented with a hand-held omni directional camera moving in a city.
机译:自动的基于图像的建模通常包括两个步骤:运动结构(SfM)和三角表面的估计。前者提供相机姿势和稀疏点云。后者通常涉及密集立体声。从计算的角度来看,最好避免密集的立体声并直接从稀疏云中估计表面。此外,对于在线应用程序在摄像机在场景中移动时更新表面将很有用。本文满足了这两个要求:引入了一种增量方法,该方法可以从由增量SfM估计的稀疏云中重建曲面。上下文是新的且困难的,因为我们确保生成的表面始终是多面的。歧管属性很重要,因为涉及表面精修的微分运算符需要它。我们已经尝试过在城市中移动的手持式全向摄像机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号