首页> 外文期刊>Computer vision and image understanding >EM-GPA: Generalized Procrustes analysis with hidden variables for 3D shape modeling
【24h】

EM-GPA: Generalized Procrustes analysis with hidden variables for 3D shape modeling

机译:EM-GPA:具有隐藏变量的广义Procrustes分析,用于3D形状建模

获取原文
获取原文并翻译 | 示例

摘要

Aligning shapes is essential in many computer vision problems and generalized Procrustes analysis (GPA) is one of the most popular algorithms to align shapes. However, if some of the shape data are missing, GPA cannot be applied. In this paper, we propose EM-GPA, which extends GPA to handle shapes with hidden (missing) variables by using the expectation-maximization (EM) algorithm. For example, 2D shapes can be considered as 3D shapes with missing depth information due to the projection of 3D shapes into the image plane. For a set of 2D shapes, EM-GPA finds scales, rotations and 3D shapes along with their mean and covariance matrix for 3D shape modeling. A distinctive characteristic of EM-GPA is that it does not enforce any rank constraint often appeared in other work and instead uses GPA constraints to resolve the ambiguity in finding scales, rotations, and 3D shapes. The experimental results show that EM-GPA can recover depth information accurately even when the noise level is high and there are a large number of missing variables. By using the images from the FRGC database, we show that EM-GPA can successfully align 2D shapes by taking the missing information into consideration. We also demonstrate that the 3D mean shape and its covariance matrix are accurately estimated. As an application of EM-GPA, we construct a 2D + 3D AAM (active appearance model) using the 3D shapes obtained by EM-GPA, and it gives a similar success rate in model fitting compared to the method using real 3D shapes. EM-GPA is not limited to the case of missing depth information, but it can be easily extended to more general cases.
机译:在许多计算机视觉问题中,对齐形状是必不可少的,而广义Procrustes分析(GPA)是最流行的对齐形状算法之一。但是,如果缺少某些形状数据,则无法应用GPA。在本文中,我们提出了EM-GPA,它通过使用期望最大化(EM)算法将GPA扩展为处理具有隐藏(缺失)变量的形状。例如,由于3D形状投影到图像平面中,因此2D形状可以被视为缺少深度信息的3D形状。对于一组2D形状,EM-GPA可以找到比例,旋转和3D形状以及它们的均值和协方差矩阵,以进行3D形状建模。 EM-GPA的一个显着特征是,它不强制执行在其他工作中经常出现的任何等级约束,而是使用GPA约束来解决寻找比例,旋转和3D形状时的歧义。实验结果表明,即使在噪声水平较高且缺少大量变量的情况下,EM-GPA仍可以准确地恢复深度信息。通过使用FRGC数据库中的图像,我们表明EM-GPA通过考虑缺失的信息可以成功地对齐2D形状。我们还证明了准确估计3D平均形状及其协方差矩阵。作为EM-GPA的一种应用,我们使用通过EM-GPA获得的3D形状来构建2D + 3D AAM(活动外观模型),与使用真实3D形状的方法相比,其在模型拟合中的成功率相似。 EM-GPA不仅限于缺少深度信息的情况,还可以轻松地扩展到更一般的情况。

著录项

  • 来源
    《Computer vision and image understanding》 |2013年第11期|1549-1559|共11页
  • 作者单位

    Department of Electrical and Computer Engineering. ASRI. Seoul National University, 1 Gwanak-Ro, Gwanak-Cu, Seoul 151-744, Republic of Korea;

    Department of Electrical and Computer Engineering. ASRI. Seoul National University, 1 Gwanak-Ro, Gwanak-Cu, Seoul 151-744, Republic of Korea;

    Department of Electrical and Computer Engineering. ASRI. Seoul National University, 1 Gwanak-Ro, Gwanak-Cu, Seoul 151-744, Republic of Korea;

    Department of Electrical and Computer Engineering. ASRI. Seoul National University, 1 Gwanak-Ro, Gwanak-Cu, Seoul 151-744, Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Shape alignment; Procrustes analysis; Non-rigid structure from motion; Virtual 3D shape model;

    机译:形状对齐;结壳分析;运动的非刚性结构;虚拟3D形状模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号