首页> 外文期刊>Computer vision and image understanding >Multi-object reconstruction from dynamic scenes: An object-centered approach
【24h】

Multi-object reconstruction from dynamic scenes: An object-centered approach

机译:从动态场景进行多对象重建:以对象为中心的方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a new framework for three-dimensional (3D) reconstruction of multiple rigid objects from dynamic scenes. Conventional 3D reconstruction from multiple views is applicable to static scenes, in which the configuration of objects is fixed while the images are taken. In our framework, we aim to reconstruct the 3D models of multiple objects in a more general setting where the configuration of the objects varies among views. We solve this problem by object-centered decomposition of the dynamic scenes using unsupervised co-recognition approach. Unlike conventional motion segmentation algorithms that require small motion assumption between consecutive views, co-recognition method provides reliable accurate correspondences of a same object among unordered and wide-baseline views. In order to segment each object region, we benefit from the 3D sparse points obtained from the structure-from-motion. These points are reliable and serve as automatic seed points for a seeded-segmentation algorithm. Experiments on various real challenging image sequences demonstrate the effectiveness of our approach, especially in the presence of abrupt independent motions of objects.
机译:在本文中,我们为动态场景中的多个刚性物体的三维(3D)重建提供了一个新的框架。从多个视图进行的常规3D重建适用于静态场景,在静态场景中,拍摄图像时对象的配置是固定的。在我们的框架中,我们旨在在更一般的设置中重建多个对象的3D模型,其中对象的配置在视图之间有所不同。我们通过使用无监督的协同识别方法对动态场景进行以对象为中心的分解来解决此问题。与传统的运动分割算法需要在连续视图之间进行小的运动假设不同,共识别方法可在无序和宽基线视图之间提供同一对象的可靠准确对应。为了分割每个对象区域,我们受益于从运动结构获得的3D稀疏点。这些点是可靠的,并且可以用作种子分割算法的自动种子点。在各种真实的具有挑战性的图像序列上进行的实验证明了我们方法的有效性,尤其是在物体突然独立运动的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号