首页> 美国卫生研究院文献>Philosophical Transactions of the Royal Society B: Biological Sciences >Resolving the neural dynamics of visual and auditory scene processing in the human brain: a methodological approach
【2h】

Resolving the neural dynamics of visual and auditory scene processing in the human brain: a methodological approach

机译:解决人脑视觉和听觉场景处理的神经动力学:一种方法学方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research.This article is part of the themed issue ‘Auditory and visual scene analysis’.
机译:在自然环境中,视觉和听觉刺激会在不到一秒钟的时间内在大范围的大脑区域引发响应,从而产生多模式场景及其属性的表示。视觉和听觉信息处理所基于的快速而复杂的神经动力学对人类认知神经科学提出了重大挑战。非侵入性测量的脑信号本质上是嘈杂的,神经表示的格式未知,并且表示之间的转换非常复杂,并且通常是非线性的。此外,没有任何一种非侵入性的大脑测量技术可以提供时空整合的视图。在这篇观点中,我们认为,可以基于最近方法学发展的三个支柱,通过共同努力来取得进展:(i)敏感的分析技术,例如解码和交叉分类,(ii)使用诸如深度模型的复杂计算模型神经网络,以及(iii)跨成像方法(磁脑电图/脑电图,功能磁共振成像)和模型的集成,例如使用代表性相似性分析。我们展示了以此精神进行的两项最新工作,并提供了有关视觉和听觉场景分析的新颖结果。最后,我们讨论了这种观点的局限性,并为将来的研究制定了具体的路线图。本文是主题“听觉和视觉场景分析”的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号