首页> 外文期刊>Computer vision and image understanding >TRASMIL: A local anomaly detection framework based on trajectory segmentation and multi-instance learning
【24h】

TRASMIL: A local anomaly detection framework based on trajectory segmentation and multi-instance learning

机译:TRASMIL:基于轨迹分割和多实例学习的局部异常检测框架

获取原文
获取原文并翻译 | 示例

摘要

Local anomaly detection refers to detecting small anomalies or outliers that exist in some subsegments of events or behaviors. Such local anomalies are easily overlooked by most of the existing approaches since they are designed for detecting global or large anomalies. In this paper, an accurate and flexible three-phase framework TRASMIL is proposed for local anomaly detection based on TRAjectory Segmentation and Multi-Instance Learning. Firstly, every motion trajectory is segmented into independent sub-trajectories, and a metric with Diversity and Granularity is proposed to measure the quality of segmentation. Secondly, the segmented sub-trajectories are modeled by a sequence learning model. Finally, multi-instance learning is applied to detect abnormal trajectories and sub-trajectories which are viewed as bags and instances, respectively. We validate the TRASMIL framework in terms of 16 different algorithms built on the three-phase framework. Substantial experiments show that algorithms based on the TRASMIL framework outperform existing methods in effectively detecting the trajectories with local anomalies in terms of the whole trajectory. In particular, the MDL-C algorithm (the combination of HDP-HMM with MDL segmentation and Citation kNN) achieves the highest accuracy and recall rates. We further show that TRASMIL is generic enough to adopt other algorithms for identifying local anomalies.
机译:局部异常检测是指检测事件或行为的某些子部分中存在的较小异常或异常值。大多数现有方法都容易忽略此类局部异常,因为它们是专为检测全局或大型异常而设计的。本文提出了一种基于TRAjectory分割和多实例学习的精确灵活的三相框架TRASMIL,用于局部异常检测。首先,将每个运动轨迹分割为独立的子轨迹,并提出了一种具有多样性和粒度的度量来测量分割质量。其次,通过序列学习模型对分段的子轨迹进行建模。最后,应用多实例学习来检测异常轨迹和子轨迹,分别将其视为包和实例。我们根据在三相框架上构建的16种不同算法来验证TRASMIL框架。大量实验表明,基于TRASMIL框架的算法在有效地检测整个轨迹上具有局部异常的轨迹方面优于现有方法。特别是,MDL-C算法(HDP-HMM与MDL分段和引文kNN的组合)实现了最高的准确性和查全率。我们进一步证明TRASMIL具有足够的通用性,可以采用其他算法来识别局部异常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号