首页> 外文期刊>Computer vision and image understanding >A learning framework for the optimization and automation of document binarization methods
【24h】

A learning framework for the optimization and automation of document binarization methods

机译:用于文档二值化方法的优化和自动化的学习框架

获取原文
获取原文并翻译 | 示例

摘要

Almost all binarization methods have a few parameters that require setting. However, they do not usually achieve their upper-bound performance unless the parameters are individually set and optimized for each input document image. In this work, a learning framework for the optimization of the binarization methods is introduced, which is designed to determine the optimal parameter values for a document image. The framework, which works with any binarization method, has a standard structure, and performs three main steps: (ⅰ) extracts features, (ⅱ) estimates optimal parameters, and (ⅲ) learns the relationship between features and optimal parameters. First, an approach is proposed to generate numerical feature vectors from 2D data. The statistics of various maps are extracted and then combined into a final feature vector, in a nonlinear way. The optimal behavior is learned using support vector regression (SVR). Although the framework works with any binarization method, two methods are considered as typical examples in this work: the grid-based Sauvola method, and Lu's method, which placed first in the DIB-CO'09 contest. The experiments are performed on the DIBCO'09 and H-DIBCO'10 datasets, and combinations of these datasets with promising results.
机译:几乎所有的二值化方法都有一些需要设置的参数。但是,除非为每个输入文档图像分别设置和优化参数,否则它们通常不会达到上限性能。在这项工作中,介绍了用于优化二值化方法的学习框架,该框架旨在确定文档图像的最佳参数值。该框架可与任何二值化方法一起使用,具有标准结构,并执行三个主要步骤:(ⅰ)提取特征,(ⅱ)估计最佳参数,(ⅲ)学习特征与最佳参数之间的关系。首先,提出了一种从2D数据生成数字特征向量的方法。提取各种地图的统计信息,然后以非线性方式组合为最终特征向量。使用支持向量回归(SVR)学习最佳行为。尽管该框架可以使用任何二值化方法工作,但在本工作中,有两种方法被视为典型示例:基于网格的Sauvola方法和Lu方法(在DIB-CO'09竞赛中排名第一)。实验是在DIBCO'09和H-DIBCO'10数据集上进行的,这些数据集的组合具有令人鼓舞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号