首页> 外文期刊>Computer vision and image understanding >Matching mixtures of curves for human action recognition
【24h】

Matching mixtures of curves for human action recognition

机译:匹配曲线混合以进行人类动作识别

获取原文
获取原文并翻译 | 示例

摘要

A learning-based framework for action representation and recognition relying on the description of an action by time series of optical flow motion features is presented. In the learning step, the motion curves representing each action are clustered using Gaussian mixture modeling (GMM). In the recognition step, the optical flow curves of a probe sequence are also clustered using a GMM, then each probe sequence is projected onto the training space and the probe curves are matched to the learned curves using a non-metric similarity function based on the longest common subsequence, which is robust to noise and provides an intuitive notion of similarity between curves. Alignment between the mean curves is performed using canonical time warping. Finally, the probe sequence is categorized to the learned action with the maximum similarity using a nearest neighbor classification scheme. We also present a variant of the method where the length of the time series is reduced by dimensionality reduction in both training and test phases, in order to smooth out the outliers, which are common in these type of sequences. Experimental results on KTH, UCF Sports and UCF YouTube action databases demonstrate the effectiveness of the proposed method.
机译:提出了一种基于学习的动作表示和识别框架,该框架依赖于光流运动特征的时间序列对动作的描述。在学习步骤中,使用高斯混合建模(GMM)对代表每个动作的运动曲线进行聚类。在识别步骤中,探针序列的光流曲线也使用GMM进行聚类,然后将每个探针序列投影到训练空间上,并使用非度量相似度函数将探针曲线与学习曲线相匹配,基于最长的公共子序列,对噪声具有鲁棒性,并提供了曲线之间相似度的直观概念。平均曲线之间的对齐使用规范时间扭曲进行。最后,使用最近的邻居分类方案,以最大相似度将探测序列分类为学习的动作。我们还提出了一种方法的变体,其中在训练和测试阶段都通过减少维数来减少时间序列的长度,以消除这些类型序列中常见的异常值。在KTH,UCF Sports和UCF YouTube动作数据库上的实验结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号