首页> 外文期刊>Computer vision and image understanding >Large margin learning of hierarchical semantic similarity for image classification
【24h】

Large margin learning of hierarchical semantic similarity for image classification

机译:基于边缘语义相似度的图像分类大幅度学习

获取原文
获取原文并翻译 | 示例

摘要

In the present paper, a novel image classification method that uses the hierarchical structure of categories to produce more semantic prediction is presented. This implies that our algorithm may not yield a correct prediction, but the result is likely to be semantically close to the right category. Therefore, the proposed method is able to provide a more informative classification result. The main idea of our method is twofold. First, it uses semantic representation, instead of low-level image features, enabling the construction of high-level constraints that exploit the relationship among semantic concepts in the category hierarchy. Second, from such constraints, an optimization problem is formulated to learn a semantic similarity function in a large-margin framework. This similarity function is then used to classify test images. Experimental results demonstrate that our method provides effective classification results for various real-image datasets.
机译:本文提出了一种新的图像分类方法,该方法利用类别的层次结构来产生更多的语义预测。这意味着我们的算法可能无法得出正确的预测,但是结果在语义上可能接近正确的类别。因此,提出的方法能够提供更多信息。我们方法的主要思想是双重的。首先,它使用语义表示而不是低级图像功能,从而可以构建利用类别层次结构中语义概念之间关系的高级约束。其次,从这种约束出发,提出了一个优化问题,以学习大利润框架中的语义相似性函数。然后使用该相似度函数对测试图像进​​行分类。实验结果表明,我们的方法为各种真实图像数据集提供了有效的分类结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号