首页> 外文期刊>Computer vision and image understanding >Detecting sudden moving objects in a series of digital images with different exposure times
【24h】

Detecting sudden moving objects in a series of digital images with different exposure times

机译:在具有不同曝光时间的一系列数字图像中检测突然移动的物体

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an algorithm to detect sudden objects appearing within a set of digital images obtained at different exposures to create a high dynamic range (HDR) image. While some previous work has focused on detecting moving objects within a scene, the majority cannot handle exposure variability. The few techniques developed specifically for HDR images track moving objects that have smaller movements within a scene compared to an abrupt object that appears and disappears quickly. Further, the algorithm advances existing methods because it does not require: 1) robust estimation of a camera response function, 2) supervision of objects in the scene such as explicit object detection and tracking, and 3) selection of a reference image. In this approach, every image in the set is first partitioned into equal size patches. Next, the properties (e.g., histograms of oriented gradients, HOG) of values within the window of the same patch are compared between the images to identify differences. Finally, a statistical classifier is developed to recognize significant differences between patch descriptors and identify patches containing sudden objects. This statistical classifier makes it possible to define confidence levels for categorizing patches into a moving object or not. A sensitivity analysis indicated that the best performance occurs when using four or six digital images. However, the optimal patch size is dependent on the size of the moving object to be detected. Hence, a mechanism is introduced to estimate the range of reasonable patch sizes given an image.
机译:本文提出了一种算法,该算法可以检测在不同曝光下获得的一组数字图像中出现的突然物体,从而创建高动态范围(HDR)图像。尽管先前的一些工作着重于检测场景中的移动物体,但大多数无法处理曝光变化。专门为HDR图像开发的几种技术可跟踪与在屏幕上突然出现和消失的突变物体相比,在场景中具有较小运动的运动物体。此外,该算法改进了现有方法,因为它不需要:1)摄像机响应函数的鲁棒估计; 2)场景中对对象的监督,例如显式对象检测和跟踪;以及3)参考图像的选择。在这种方法中,首先将集合中的每个图像划分为相等大小的小块。接下来,在图像之间比较同一补丁窗口内的值的属性(例如,定向梯度的直方图,HOG),以识别差异。最后,开发了统计分类器以识别补丁描述符之间的显着差异并识别包含突发对象的补丁。该统计分类器使得可以定义用于将补丁分类为或不分类为运动对象的置信度水平。灵敏度分析表明,当使用四个或六个数字图像时,将获得最佳性能。但是,最佳斑块尺寸取决于要检测的运动物体的尺寸。因此,引入了一种机制来估计给定图像的合理补丁大小范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号