首页> 外文期刊>Computer vision and image understanding >Dehazing cost volume for deep multi-view stereo in scattering media with airlight and scattering coefficient estimation
【24h】

Dehazing cost volume for deep multi-view stereo in scattering media with airlight and scattering coefficient estimation

机译:在散射介质中的深度多视图立体声脱落成本量,散射系数估计

获取原文
获取原文并翻译 | 示例

摘要

We propose a learning-based multi-view stereo (MVS) method in scattering media, such as fog or smoke, with a novel cost volume, called the dehazing cost volume. Images captured in scattering media are degraded due to light scattering and attenuation caused by suspended particles. This degradation depends on scene depth; thus, it is difficult for traditional MVS methods to evaluate photometric consistency because the depth is unknown before three-dimensional (3D) reconstruction. The dehazing cost volume can solve this chicken-and-egg problem of depth estimation and image restoration by computing the scattering effect using swept planes in the cost volume. We also propose a method of estimating scattering parameters, such as airlight, and a scattering coefficient, which are required for our dehazing cost volume. The output depth of a network with our dehazing cost volume can be regarded as a function of these parameters; thus, they are geometrically optimized with a sparse 3D point cloud obtained at a structure-from-motion step. Experimental results on synthesized hazy images indicate the effectiveness of our dehazing cost volume against the ordinary cost volume regarding scattering media. We also demonstrated the applicability of our dehazing cost volume to real foggy scenes.
机译:我们提出了一种基于学习的多视图立体声(MVS)方法,如散射介质,例如雾或烟,具有新的成本体积,称为除虫成本。由于由悬浮颗粒引起的光散射和衰减,在散射介质中捕获的图像降低。这种降级取决于场景深度;因此,传统的MVS方法难以评估光度级级,因为在三维(3D)重建之前深度未知。去除草成本量可以通过计算成本量中的扫描效果来解决这种深度估计和图像恢复的这种鸡蛋和蛋问题。我们还提出了一种估计散射参数的方法,例如飞机,以及我们的去吸收成本量所需的散射系数。通过我们的去吸收成本量的网络的输出深度可以被视为这些参数的函数;因此,它们用在结构 - 从运动步骤中获得的稀疏3D点云进行几何优化。合成朦胧图像的实验结果表明我们的去除盖成本体积对散射介质的普通成本体积的有效性。我们还展示了我们的脱水成本体积对真正的有雾场景的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号