首页> 外文期刊>Computer vision and image understanding >Two motion models for improving video object tracking performance
【24h】

Two motion models for improving video object tracking performance

机译:用于改善视频对象跟踪性能的两个运动模型

获取原文
获取原文并翻译 | 示例

摘要

Two motion models are proposed to enhance the performance of video object tracking (VOT) algorithms. The first one is a random walk model that captures the randomness of motion patterns. The second one is a data-adaptive vector auto-regressive (VAR) model that exploits more regular motion patterns. The performance of these models is evaluated empirically using real-world datasets. Three real-time publicly available visual object trackers: the normalized cross-correlation (NCC) tracker, the New Scale Adaptive with Multiple Features (NSAMF) tracker, and the correlation filter neural network (CFNet) are modified using each of these two models. The tracking performances are then compared against the original formulation. It is observed that both models of the prior information lead to performance enhancement of all three trackers. This validates the hypothesis that when training videos are available, prior information embodied in the motion models can improve the tracking performance.
机译:提出了两个运动模型来增强视频对象跟踪(VOT)算法的性能。第一个是一个随机步行模型,捕获运动模式的随机性。第二个是一种数据 - 自适应矢量自动回归(var)模型,可利用更规则的运动模式。这些模型的性能是使用真实世界数据集凭经验评估的。三个实时公开可视化对象跟踪器:归一化互相关(NCC)跟踪器,使用这两种型号中的每一个进行修改多个特征(NSAMF)跟踪器的新比例,以及相关滤波器神经网络(CFNET)。然后将跟踪性能与原始配方进行比较。观察到,先前信息的两种模型都会导致所有三个跟踪器的性能增强。这验证了该假设,当培训视频可用时,运动模型中体现的先前信息可以提高跟踪性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号