首页> 外文期刊>Computer vision and image understanding >Heterogeneous hand gesture recognition using 3D dynamic skeletal data
【24h】

Heterogeneous hand gesture recognition using 3D dynamic skeletal data

机译:使用3D动态骨骼数据进行异构手势识别

获取原文
获取原文并翻译 | 示例

摘要

Hand gestures are the most natural and intuitive non-verbal communication medium while interacting with a computer, and related research efforts have recently boosted interest. Additionally, the identifiable features of the hand pose provided by current commercial inexpensive depth cameras can be exploited in various gesture recognition based systems, especially for Human-Computer Interaction. In this paper, we focus our attention on 3D dynamic gesture recognition systems using the hand pose information. Specifically, we use the natural structure of the hand topology - called later hand skeletal data - to extract effective hand kinematic descriptors from the gesture sequence. Descriptors are then encoded in a statistical and temporal representation using respectively a Fisher kernel and a multi-level temporal pyramid. A linear SVM classifier can be applied directly on the feature vector computed over the whole presegmented gesture to perform the recognition. Furthermore, for early recognition from continuous stream, we introduced a prior gesture detection phase achieved using a binary classifier before the final gesture recognition. The proposed approach is evaluated on three hand gesture datasets containing respectively 10, 14 and 25 gestures with specific challenging tasks. Also, we conduct an experiment to assess the influence of depth-based hand pose estimation on our approach. Experimental results demonstrate the potential of the proposed solution in terms of hand gesture recognition and also for a low-latency gesture recognition. Comparative results with state-of-the-art methods are reported.
机译:手势是与计算机交互时最自然,最直观的非语言交流媒体,相关的研究工作最近引起了人们的兴趣。另外,在各种基于手势识别的系统中,尤其是对于人机交互,可以利用由当前的商用廉价深度相机提供的手势的可识别特征。在本文中,我们将注意力集中在使用手势信息的3D动态手势识别系统上。具体来说,我们使用手形拓扑的自然结构(称为后来的手形骨骼数据)从手势序列中提取有效的手运动学描述符。然后分别使用Fisher核和多层时间金字塔以统计和时间表示形式对描述符进行编码。线性SVM分类器可以直接应用于在整个预先分割的手势上计算出的特征向量上以执行识别。此外,为了从连续流中进行早期识别,我们引入了在最终手势识别之前使用二进制分类器实现的先前手势检测阶段。对三个手势数据集(分别包含具有特定挑战性任务的10个,14个和25个手势)评估了所提出的方法。此外,我们进行了一项实验,以评估基于深度的手势估计对我们方法的影响。实验结果证明了所提出的解决方案在手势识别以及低延迟手势识别方面的潜力。报告了使用最新技术的比较结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号