首页> 外文期刊>Computers & Graphics >SFINGE 3D: A novel benchmark for online detection and recognition of heterogeneous hand gestures from 3D fingers' trajectories
【24h】

SFINGE 3D: A novel benchmark for online detection and recognition of heterogeneous hand gestures from 3D fingers' trajectories

机译:SFinge 3D:3D手指轨迹的在线检测和识别异构手势的新基准

获取原文
获取原文并翻译 | 示例

摘要

In recent years gesture recognition has become an increasingly interesting topic for both research and industry. While interaction with a device through a gestural interface is a promising idea in several applications especially in the industrial field, some of the issues related to the task are still considered a challenge. In the scientific literature, a relevant amount of work has been recently presented on the problem of detecting and classifying gestures from 3D hands' joints trajectories that can be captured by cheap devices installed on head-mounted displays and desktop computers. The methods proposed so far can achieve very good results on benchmarks requiring the offline supervised classification of segmented gestures of a particular kind but are not usually tested on the more realistic task of finding gestures execution within a continuous hand tracking session.In this paper, we present a novel benchmark, SFINGE 3D, aimed at evaluating online gesture detection and recognition. The dataset is composed of a dictionary of 13 segmented gestures used as a training set and 72 trajectories each containing 3-5 of the 13 gestures, performed in continuous tracking, padded with random hand movements acting as noise. The presented dataset, captured with a head-mounted Leap Motion device, is particularly suitable to evaluate gesture detection methods in a realistic use-case scenario, as it allows the analysis of online detection performance on heterogeneous gestures, characterized by static hand pose, global hand motions, and finger articulation.We exploited SFINGE 3D to compare two different approaches for the online detection and classification, one based on visual rendering and Convolutional Neural Networks and the other based on geometrybased handcrafted features and dissimilarity-based classifiers. We discuss the results, analyzing strengths and weaknesses of the methods, and deriving useful hints for their improvement. (C) 2020 Elsevier Ltd. All rights reserved.
机译:近年来,姿态认可已成为研究和行业的越来越有趣的话题。虽然通过手势界面与设备的互动是一个特别在工业领域的几个应用中的有希望的想法,但一些与任务相关的问题仍然被认为是一个挑战。在科学文献中,最近有一个相关的作品,最近介绍了从安装在头戴式显示器和台式计算机上安装的廉价设备捕获的3D手中的手势的检测和分类手势的问题。到目前为止所提出的方法可以在需要离线监督的基准上实现特定类型的分段手势的基准,但通常在连续手动跟踪会话中找到姿态执行的更现实的任务。在本文中,我们目前旨在评估在线手势检测和识别的新型基准。数据集由用作训练集的13个分段手势的字典和72个轨迹,每个轨迹包含在连续跟踪中的3-5个手势中执行,填充用作噪声的随机手动运动。使用头戴式LEAP运动设备捕获的所提出的数据集特别适用于在实际用途情况下评估手势检测方法,因为它允许分析异构手势上的在线检测性能,其特征在于静态手势,全局手动运动和手指铰接。我们利用SFINE 3D比较了两种不同的在线检测和分类方法,一个基于视觉渲染和卷积神经网络,另一个基于几何形状的手工特征和基于不同的基础分类。我们讨论了这些方法,分析了方法的优点和弱点,并导出了有用的提示进行改善。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Computers & Graphics》 |2020年第10期|232-242|共11页
  • 作者单位

    Univ Verona Dept Comp Sci Str Grazie 15 I-37134 Verona Italy;

    Univ Verona Dept Comp Sci Str Grazie 15 I-37134 Verona Italy;

    CNR Genoa Branch Inst Appl Math & Informat Technol Enrico Magenes Via De Marini 6 I-16149 Genoa Italy;

    CNR Genoa Branch Inst Appl Math & Informat Technol Enrico Magenes Via De Marini 6 I-16149 Genoa Italy;

    CNR Genoa Branch Inst Appl Math & Informat Technol Enrico Magenes Via De Marini 6 I-16149 Genoa Italy;

    Univ Verona Dept Comp Sci Str Grazie 15 I-37134 Verona Italy;

    CNR Genoa Branch Inst Appl Math & Informat Technol Enrico Magenes Via De Marini 6 I-16149 Genoa Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computers and graphics; Formatting; Guidelines;

    机译:计算机和图形;格式化;指导方针;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号