首页> 外文期刊>Computer Vision, IET >Adversarial examples detection through the sensitivity in space mappings
【24h】

Adversarial examples detection through the sensitivity in space mappings

机译:通过空间映射中的灵敏度检测对抗性实例

获取原文
获取原文并翻译 | 示例

摘要

Adversarial examples (AEs) against deep neural networks (DNNs) raise wide concerns about the robustness of DNNs. Existing detection mechanisms are often limited to a given attack algorithm. Therefore, it is highly desirable to develop a robust detection approach that remains effective for a large group of attack algorithms. In addition, most of the existing defences only perform well for small images (e.g. MNIST and Canadian institute for advanced research (CIFAR)) rather than large images (e.g. ImageNet). In this paper, the authors propose a robust and effective defence method for analysing the sensitivity of various AEs, especially in a much harder case (large images). Their method first creates a feature map from the input space to the new feature space, by utilising 19 different feature mapping methods. Then, a detector is learned with the machine-learning algorithm to recognise the unique distribution of AEs. Their extensive evaluations on their proposed detector show that their detector can achieve: (i) low false-positive rate (<1%), (ii) high true-positive rate (higher than 98%), (iii) low overhead (<0.1 s per input), and (iv) good robustness (work well across different learning models, attack algorithms, and parameters), which demonstrate the efficacy of the proposed detector in practise.
机译:对抗深神经网络(DNN)的对抗示例(AES)促使对DNN的鲁棒性的广泛关注。现有的检测机制通常限于给定的攻击算法。因此,非常希望开发一种稳健的检测方法,该检测方法对大量的攻击算法保持有效。此外,大多数现有防御仅适用于小型图像(例如,Mnist和Caradian高级研究所(CIFAR))而不是大图像(例如,想象成)。在本文中,作者提出了一种稳健而有效的防御方法,用于分析各种AES的敏感性,尤其是在更难的案例中(大图像)。它们的方法首先通过利用19个不同的特征映射方法创建从输入空间到新功能空间的功能映射。然后,使用机器学习算法学习检测器来识别AES的唯一分布。他们对其所提出的探测器的广泛评估表明,其探测器可以实现:(i)低假阳性率(<1%),(ii)高真正的阳性率(高于98%),(iii)低开销(<每次输入0.1秒)和(iv)良好的鲁棒性(跨越不同的学习模型,攻击算法和参数工作),这证明了所提出的探测器在实践中的功效。

著录项

  • 来源
    《Computer Vision, IET》 |2020年第5期|201-213|共13页
  • 作者单位

    Zhejiang University Department of Computer Science and Technology Hangzhou People's Republic of China;

    Zhejiang University Department of Computer Science and Technology Hangzhou People's Republic of China;

    Zhejiang University Department of Computer Science and Technology Hangzhou People's Republic of China;

    Zhejiang University Department of Computer Science and Technology Hangzhou People's Republic of China;

    Zhejiang University Department of Computer Science and Technology Hangzhou People's Republic of China;

    University of Illinois at Urbana-Champaign Department of Computer Science Urbana USA;

    Lehigh University Department of Computer Science Bethlehem USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    learning (artificial intelligence); neural nets; object detection;

    机译:学习(人工智能);神经网;物体检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号