首页> 外文期刊>Computer Vision, IET >Regularising neural networks for future trajectory prediction via inverse reinforcement learning framework
【24h】

Regularising neural networks for future trajectory prediction via inverse reinforcement learning framework

机译:通过逆加强学习框架进行对未来轨迹预测的正规化神经网络

获取原文
获取原文并翻译 | 示例

摘要

Predicting distant future trajectories of agents in a dynamic scene is challenging because the future trajectory of an agent is affected not only by their past trajectory but also the scene contexts. To tackle this problem, the authors propose a model based on recurrent neural networks, and a novel method for training this model. The proposed model is based on an encoder–decoder architecture where the encoder encodes inputs (past trajectory and scene context information), while the decoder produces a future trajectory from the context vector given by the encoder. To make the proposed model better utilise the scene context information, the authors let the encoder predict the positions in the past trajectory and a reward function evaluate the positions along with the scene context information generated by the positions. The reward function, which is simultaneously trained with the proposed model, plays the role of a regulariser for the model during the simultaneous training. The authors evaluate the proposed model on several public benchmark datasets. The experimental results show that the prediction performance of the proposed model is greatly improved by the proposed regularisation method, which outperforms the-state-of-the-art models in terms of accuracy.
机译:预测动态场景中的代理的遥远的未来轨迹是具有挑战性的,因为代理人的未来轨迹不仅受到过去的轨迹而且影响了场景背景。为了解决这个问题,作者提出了一种基于经常性神经网络的模型,以及训练该模型的新方法。所提出的模型基于编码器 - 解码器架构,其中编码器编码输入(过去轨迹和场景上下文信息),而解码器从编码器给出的上下文向量产生未来轨迹。为了使提出的模型更好地利用现场上下文信息,作者让编码器预测过去轨迹中的位置,并且奖励函数评估位置以及由位置生成的场景上下文信息。奖励功能,同时培训了所提出的模型,在同时训练期间扮演模型的常规机构的角色。作者在几个公共基准数据集中评估了所提出的模型。实验结果表明,所提出的正规化方法大大提高了所提出的模型的预测性能,这在准确性方面优于最先进的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号