首页> 外文期刊>Computer speech and language >Sentence transition matrix: An efficient approach that preserves sentence semantics
【24h】

Sentence transition matrix: An efficient approach that preserves sentence semantics

机译:句子转换矩阵:一种避孕句语义的有效方法

获取原文
获取原文并翻译 | 示例

摘要

Sentence embedding is an influential research topic in natural language processing (NLP). Generation of sentence vectors that reflect the intrinsic meaning of sentences is crucial for improving performance in various NLP tasks. Therefore, numerous supervised and unsupervised sentence-representation approaches have been proposed since the advent of the distributed representation of words. These approaches have been evaluated on semantic textual similarity (STS) tasks designed to measure the degree of semantic information preservation; neural network-based supervised embedding models typically deliver state-of-the-art performance. However, these models have limitations in that they have numerous learnable parameters and thus require large amounts of specific types of labeled training data. Pretrained language model-based approaches, which have become a predominant trend in the NLP field, alleviate this issue to some extent; however, it is still necessary to collect sufficient labeled data for the fine-tuning process is still necessary. Herein, we propose an efficient approach that learns a transition matrix tuning a sentence embedding vector to capture the latent semantic meaning. Our proposed method has two practical advantages: (1) it can be applied to any sentence embedding method, and (2) it can deliver robust performance in STS tasks with only a few training examples.
机译:句子嵌入是自然语言处理中的一个有影响力的研究课题(NLP)。反映句子内在含义的句子向量的生成对于提高各种NLP任务中的性能至关重要。因此,已提出了许多监督和无监督的句子代表方法,自分布式代表的言论自题以来已经提出了。这些方法已经在语义文本相似性(STS)任务上进行了评估,旨在测量语义信息保存程度;基于神经网络的监督嵌入模型通常提供最先进的性能。然而,这些模型的局限性在于它们具有许多可学习的参数,因此需要大量的特定类型的标记训练数据。基于预用的语言模型,已成为NLP领域的主要趋势,在某种程度上减轻了这个问题;但是,仍然需要为微调过程收集足够的标记数据。这里,我们提出了一种有效的方法,该方法学习转换矩阵调整句子嵌入向量以捕获潜在语义含义。我们所提出的方法具有两个实际优点:(1)它可以应用于任何句子嵌入方法,(2)只能在STS任务中提供强大的性能,只有几个训练示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号