首页> 外文期刊>Computer speech and language >Representation transfer learning from deep end-to-end speech recognition networks for the classification of health states from speech
【24h】

Representation transfer learning from deep end-to-end speech recognition networks for the classification of health states from speech

机译:从言语中,从深端到端语音识别网络中的代表转移学习

获取原文
获取原文并翻译 | 示例

摘要

Representation transfer learning has been widely used across a range of machine learning tasks. One such notable approach seen in the speech literature is the use of Convolutional Neural Networks, pre-trained for image classification tasks, to extract features from spectrograms of speech signals. Interestingly, despite the strong performance of such approaches, there have been minimal research efforts exploring the suitability of using speech-specific networks to perform feature extraction. In this regard, a novel feature representation learning framework is presented herein. This approach is comprising the use of Automatic Speech Recognition (ASR) deep neural networks as feature extractors, the fusion of several extracted feature representations using Compact Bilinear Pooling (CBP), and finally inference via a specially optimised Recurrent Neural Network (RNN) classifier. To determine the usefulness of these feature representations, they are comprehensively tested on two representative speech-health classification tasks, namely the food-type being eaten and speaker intoxication. Key results indicate the promise of the extracted features, demonstrating comparable results to other state-of-the-art approaches in the literature.
机译:代表转移学习已广泛应用于一系列机器学习任务。语音文献中看到的一种可显着的方法是使用卷积神经网络,预先训练的图像分类任务,以从语音信号的谱图中提取特征。有趣的是,尽管这些方法的表现强劲,但探讨了使用语音特定网络进行特征提取的适用性最小的研究工作。在这方面,本文呈现了一种新颖的特征表示学习框架。该方法包括使用自动语音识别(ASR)深神经网络作为特征提取器,使用紧凑的双线性池(CBP)的几个提取的特征表示的融合,并且最终通过特殊优化的经常性神经网络(RNN)分类器的推断。为了确定这些特征表示的有用性,它们在两种代表性语音卫生分类任务中全面测试,即食品类型被食用和扬声器中毒。关键结果表明提取的特征的承诺,证明了文献中的其他最先进的方法的可比结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号