首页> 外文期刊>Computer speech and language >An unsupervised approach to detect review spam using duplicates of images, videos and Chinese texts
【24h】

An unsupervised approach to detect review spam using duplicates of images, videos and Chinese texts

机译:一种无监督的方法,可以使用重复的图像,视频和中文文本来检测审查垃圾邮件

获取原文
获取原文并翻译 | 示例

摘要

Intuitively, image- or video-based recommendations seem to be more reliable than those containing plain text, and these types of recommendations have recently become widely encouraged and commonly seen across opinion sharing platforms. Considering their potential for manipulation, graphs (e.g., images and videos) are more vulnerable to spam than scripts. However, most state-of-the-art solutions for opinion spam detection are exclusively devoted to natural language parsing, and less work has been done concerning photos or videos. After investigating the top two business-to-customer websites, i.e., JD.com and TMALL com, we propose an unsupervised approach to label suspected spam based on different types of duplication across images, videos and Chinese texts. Experiments verified the effectiveness of this approach and obtained several conclusions: 1) the situation of image spam is more severe than that of video and text spam; 2) for manipulation, borrowing something from a marketing page is less attractive than stealing from other reviewers; 3) in addition to using identical texts, spammers also use fictitious rare incidents to influence customers; and 4) overlapping duplications of images, videos and texts are common.
机译:直观地说,图像 - 或者基于视频的建议似乎比包含纯文本的更可靠,而这些类型的建议最近已经被广泛鼓励和跨意见共享平台常见。考虑到他们的操作潜力,图形(例如,图像和视频)更容易受到垃圾邮件比脚本。然而,国家的最先进最让舆论垃圾邮件检测解决方案是专门致力于自然语言解析,以及较少的工作已经涉及照片或视频做。调查前两名企业对客户网站后,即JD.com和天猫融为一体,提出了一种基于不同类型的跨图像,视频和中国文献重复的无监督的方式来标记可疑的垃圾邮件。实验验证了该方法的有效性,并得到几个结论:1)图片垃圾邮件的情况比视频和文本垃圾邮件的更严重; 2)操作,从营销的页面借款的东西比从其他审阅窃取的吸引力; 3)除了使用相同的文字,垃圾邮件发送者也可以使用虚构的罕见事件,以影响客户;和4)重叠图像的重复,视频,文字是共同的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号