首页> 外文期刊>Computer speech and language >CV Retrieval System based on job description matching using hybrid word embeddings
【24h】

CV Retrieval System based on job description matching using hybrid word embeddings

机译:基于作业描述的CV检索系统使用混合词嵌入式匹配

获取原文
获取原文并翻译 | 示例

摘要

We use the Average Word Embeddings (AWE) model for retrieving relevant CVs based on a job description. We designed experiments to demonstrate that the trained vectors, obtained from a balanced domain corpus, are better than using pre-trained word embeddings. We also present some experiments to show that different combinations of both word embeddings spaces increase the overall accuracy of the retrieval task compared to using only the pre-trained vectors. However an issue arised when both embeddings spaces are not sharing the same dimensions and terms, as shown in our case. In order to handle this situation, we suggest to use a method to reduce dimensions of pre-trained vectors (e.g. PCA), and combine them with our trained vectors. This improves the accuracy of the retrieval task for unseen CVs. Our main contribution is to create a model that detects which embeddings need to be used in order to maximize the relevant retrieval results. (C) 2019 Elsevier Ltd. All rights reserved.
机译:我们使用平均单词嵌入式(AWE)模型来根据作业描述检索相关的CVS。我们设计实验以证明从平衡域的域语料库获得的训练有素的载体比使用预先训练的Word Embeddings更好。我们还提供了一些实验,以表明两个单词嵌入空间的不同组合增加了与使用预先训练的向量相比的检索任务的总体精度。但是,当嵌入空间都不共享相同的尺寸和术语时,会出现一个问题,如我们的情况所示。为了处理这种情况,我们建议使用一种方法来减少预先训练的矢量维度(例如PCA),并将它们与我们训练有素的向量相结合。这提高了看不见的CVS的检索任务的准确性。我们的主要贡献是创建一个模型,检测需要使用哪些嵌入,以便最大化相关的检索结果。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号