首页> 外文期刊>Computer speech and language >Prosodic boundary detection using syntactic and acoustic information
【24h】

Prosodic boundary detection using syntactic and acoustic information

机译:使用句法和声学信息进行韵律边界检测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a two-stage procedure for automatic prosodic boundary detection in Russian based on textual and acoustic data. The key idea of the method is (1) to predict all potential prosodic boundaries based on syntax and (2) among these potential boundaries, to choose those which are marked acoustically. For the first stage we developed a system which predicted a potential boundary whenever two adjacent words were not connected with each other in terms of syntax; for this we used a dependency tree parser and added several simple rules. At the second stage we run a random forest classifier to detect the actual prosodic boundaries using a small set of acoustic features. Of all the observed prosodic features pause duration worked best, and for some speakers it could be used as the only acoustic cue with no change in efficiency. For other speakers, however, other features were useful, such as tempo and amplitude resets or F-0 range, and the choice of the features was speaker-dependent. In the end the procedure worked with the F-1 measure of 0.91, recall of 0.90 and precision of 0.93, which is the best published result for Russian. (C) 2018 Elsevier Ltd. All rights reserved.
机译:本文提出了一种基于文本和声学数据的俄语韵律边界自动检测的两阶段程序。该方法的关键思想是(1)根据语法预测所有潜在的韵律边界,以及(2)在这些潜在边界中选择在声学上标记的边界。在第一阶段,我们开发了一种系统,该系统可以预测两个相邻词在语法上彼此不连接时的潜在边界。为此,我们使用了一个依赖树解析器,并添加了一些简单的规则。在第二阶段,我们运行随机森林分类器,以使用少量声学特征检测实际的韵律边界。在所有观察到的韵律特征中,暂停持续时间效果最好,对于某些扬声器而言,它可以用作唯一的声音提示,而效率没有变化。但是,对于其他扬声器,其他功能也很有用,例如速度和幅度重置或F-0范围,并且这些功能的选择取决于扬声器。最后,该程序的F-1度量值为0.91,召回率为0.90,精度为0.93,这是俄语发行的最佳结果。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号