首页> 外文期刊>Computer speech and language >Improving LSTM CRFs using character-based compositions for Korean named entity recognition
【24h】

Improving LSTM CRFs using character-based compositions for Korean named entity recognition

机译:使用基于字符的组合物改进LSTM CRF以实现韩国命名实体识别

获取原文
获取原文并翻译 | 示例

摘要

Standard approaches to named entity recognition (NER) are based on sequential labeling methods, such as conditional random fields (CRFs), which label each word in a sentence and extract entities from them that correspond to named entities. With the extensive deployment of deep learning methods for sequential labeling tasks, state-of-the-art NER performance has been achieved on long short-term memory (LSTM) architectures using only basic features. In this paper, we address Korean NER tasks and propose an extension of a bidirectional LSTM CRF by investigating character-based representation. Our extension involves deploying a hybrid representation using ConvNet and LSTM for the sequential modeling of characters, namely a character-based LSTM-ConvNet hybrid representation. Using morphemes as processing units for bidirectional LSTM, we apply a proposed hybrid representation composed of morpheme vectors. Experimental results showed that the proposed LSTM-ConvNet hybrid representation yielded improvements over each single representation on standard Korean NER tasks. (C) 2018 Elsevier Ltd. All rights reserved.
机译:命名实体识别(NER)的标准方法基于顺序标记方法,例如条件随机字段(CRF),它标记句子中的每个单词并从中提取与命名实体相对应的实体。随着深度学习方法的广泛部署以用于顺序标记任务,仅使用基本功能的长短期内存(LSTM)架构就已经实现了最新的NER性能。在本文中,我们解决了朝鲜语NER任务,并建议通过研究基于字符的表示形式来扩展双向LSTM CRF。我们的扩展涉及使用ConvNet和LSTM为字符的顺序建模部署混合表示,即基于字符的LSTM-ConvNet混合表示。使用语素作为双向LSTM的处理单元,我们应用了由语素向量组成的拟议混合表示。实验结果表明,提出的LSTM-ConvNet混合表示形式比标准朝鲜语NER任务的每个单个表示形式都有改进。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号