首页> 外文会议>First workshop on subword and character level models in NLP 2017 >Character-based Bidirectional LSTM-CRF with words and characters for Japanese Named Entity Recognition
【24h】

Character-based Bidirectional LSTM-CRF with words and characters for Japanese Named Entity Recognition

机译:基于字符的双向LSTM-CRF,带有单词和字符,用于日语命名实体识别

获取原文
获取原文并翻译 | 示例

摘要

Recently, neural models have shown superior performance over conventional models in NER tasks. These models use CNN to extract sub-word information along with RNN to predict a tag for each word. However, these models have been tested almost entirely on English texts. It remains unclear whether they perform similarly in other languages. We worked on Japanese NER using neural models and discovered two obstacles of the state-of-the-art model. First, CNN is unsuitable for extracting Japanese sub-word information. Secondly, a model predicting a tag for each word cannot extract an entity when a part of a word composes an entity. The contributions of this work are (i) verifying the effectiveness of the state-of-the-art NER model for Japanese, (ii) proposing a neural model for predicting a tag for each character using word and character information. Experimentally obtained results demonstrate that our model outperforms the state-of-the-art neural English NER model in Japanese.
机译:最近,在NER任务中,神经模型已显示出优于常规模型的性能。这些模型使用CNN提取子词信息,并使用RNN预测每个词的标签。但是,这些模型几乎已经在英文文本上进行了测试。尚不清楚它们在其他语言中的表现是否相似。我们使用神经模型研究了日本NER,发现了最新模型的两个障碍。首先,CNN不适合提取日语子词信息。其次,当单词的一部分组成实体时,预测每个单词的标签的模型无法提取实体。这项工作的贡献是(i)验证了针对日语的最新NER​​模型的有效性,(ii)提出了一种用于使用单词和字符信息来预测每个字符标签的神经模型。实验获得的结果表明,我们的模型优于日语的最新神经英语NER模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号