首页> 外文期刊>Computer speech and language >Backoff hierarchical class n-gram language models: effectiveness to model unseen events in speech recognition
【24h】

Backoff hierarchical class n-gram language models: effectiveness to model unseen events in speech recognition

机译:退避层次类n-gram语言模型:对语音识别中未见事件建模的有效性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce the backoff hierarchical class n-gram language models to better estimate the likelihood of unseen n-gram events. This multi-level class hierarchy language modeling approach generalizes the well-known backoff n-gram language modeling technique. It uses a class hierarchy to define word contexts. Each node in the hierarchy is a class that contains all the words of its descendant nodes. The closer a node to the root, the more general the class (and context) is. We investigate the effectiveness of the approach to model unseen events in speech recognition. Our results illustrate that the proposed technique outperforms backoff n-gram language models. We also study the effect of the vocabulary size and the depth of the class hierarchy on the performance of the approach. Results are presented on Wall Street Journal (WSJ) corpus using two vocabulary set: 5000 words and 20,000 words. Experiments with 5000 word vocabulary, which contain a small numbers of unseen events in the test set, show up to 10% improvement of the unseen event perplexity when using the hierarchical class n-gram language models. With a vocabulary of 20,000 words, characterized by a larger number of unseen events, the perplexity of unseen events decreases by 26%, while the word error rate (WER) decreases by 12% when using the hierarchical approach. Our results suggest that the largest gains in performance are obtained when the test set contains a large number of unseen events.
机译:在本文中,我们介绍了退避层次类n-gram语言模型,以更好地估计看不见的n-gram事件的可能性。这种多级类层次结构语言建模方法概括了众所周知的退避n-gram语言建模技术。它使用类层次结构定义单词上下文。层次结构中的每个节点都是一个类,包含其后代节点的所有单词。节点离根越近,类(和上下文)就越通用。我们调查了语音识别中未见事件的建模方法的有效性。我们的结果表明,所提出的技术优于退避n-gram语言模型。我们还研究了词汇量和班级层次深度对方法性能的影响。结果在《华尔街日报》(WSJ)语料库中使用两个词汇集显示:5000个单词和20,000个单词。使用测试级n-gram语言模型对5000个单词的词汇进行的实验(其中的测试集中包含少量未发现的事件)显示出将未见事件的复杂性提高了10%。词汇量为20,000个单词,并具有大量未发现事件的特征,未发现事件的困惑度降低了26%,而使用分层方法时,单词错误率(WER)降低了12%。我们的结果表明,当测试集包含大量未发现的事件时,可以获得最大的性能提升。

著录项

  • 来源
    《Computer speech and language》 |2007年第1期|p.88-104|共17页
  • 作者

    Imed Zitouni;

  • 作者单位

    IBM T.J. Watson Research Center, Multilingual NLP, P.O. Box 218, 20-136, Yorktown Heights, NY 10598, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号