首页> 外文期刊>Computer speech and language >MPE-based discriminative linear transforms for speaker adaptation
【24h】

MPE-based discriminative linear transforms for speaker adaptation

机译:基于MPE的判别线性变换用于说话人自适应

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the use of discriminative linear transforms (DLT) is investigated to construct speaker adaptive speech recognition systems, where a discriminative criterion rather than ML is used for transform parameter estimation. The minimum phone error (MPE) criterion is investigated for DLT estimation, by making use of a so-called weak-sense auxiliary function to derive the estimation formulae. An implementation based on lattices is used for DLT statistics accumulation, where the use of a weakened language model allows more confusion data to be included. To improve DLT estimation for unsupervised adaptation, a method of incorporating word correctness information of the supervision into transform estimation is developed. The confidence scores calculated by confusion network decoding are used to represent the word correctness and weight the numerator statistics during DLT estimation. This makes the DLT estimation less sensitive to errors in the supervision. Experiments on transcription of read newspaper data and on conversational telephone speech transcription have shown the improvements of DLT over MLLR for both supervised and unsupervised adaptation, and the effectiveness of confidence scores for improving both normal and DLT-based MLLR adaptation.
机译:在本文中,研究了使用判别线性变换(DLT)来构造说话人自适应语音识别系统,其中使用判别标准而不是ML进行变换参数估计。通过使用所谓的弱感知辅助函数来推导估计公式,研究了用于DLT估计的最小电话错误(MPE)准则。基于网格的实现用于DLT统计信息的累积,其中使用弱化的语言模型可以包含更多的混淆数据。为了改进用于无监督适应的DLT估计,开发了一种将监督的词正确性信息纳入变换估计的方法。通过混淆网络解码计算出的置信度得分用于表示单词的正确性,并在DLT估计期间加权分子统计量。这使得DLT估算对监督中的错误不太敏感。关于已读报纸数据的转录和对话电话语音转录的实验表明,对于有监督和无监督适应,DLT优于MLLR,并且置信度得分对改善正常和基于DLT的MLLR适应的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号