首页> 外文期刊>IEEE signal processing letters >Speaker adaptation using discriminative linear regression on time-varying mean parameters in trended HMM
【24h】

Speaker adaptation using discriminative linear regression on time-varying mean parameters in trended HMM

机译:趋势HMM中基于时变平均参数的判别线性回归的说话人适应

获取原文
获取原文并翻译 | 示例

摘要

In this letter, we report our recent work on applications of the combined maximum likelihood linear regression (MLLR) and the minimum classification error training (MCE) approach to estimating the time-varying polynomial Gaussian mean functions in the trended hidden Markov model (HMM). We call this integrated approach the minimum classification error linear regression (MCELR), which has been developed and implemented in speaker adaptation experiments using TI46 corpora. Results show that the adaptation of linear regression on time-varying mean parameters is always better when fewer than three adaptation tokens are used.
机译:在这封信中,我们报告了我们最近在结合最大似然线性回归(MLLR)和最小分类误差训练(MCE)方法来估计趋势隐马尔可夫模型(HMM)中的时变多项式高斯均值函数方面的工作。我们将此集成方法称为最小分类误差线性回归(MCELR),该方法已在使用TI46语料库的说话人适应性实验中开发和实施。结果表明,当使用少于三个适应标记时,线性回归对时变平均参数的适应总是更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号