首页> 外文期刊>Computer speech and language >Joint evaluation of multiple speech patterns for speech recognition and training
【24h】

Joint evaluation of multiple speech patterns for speech recognition and training

机译:联合评估多种语音模式以进行语音识别和训练

获取原文
获取原文并翻译 | 示例

摘要

We are addressing the novel problem of jointly evaluating multiple speech patterns for automatic speech recognition and training. We propose solutions based on both the non-parametric dynamic time warping (DTW) algorithm, and the parametric hidden Markov model (HMM). We show that a hybrid approach is quite effective for the application of noisy speech recognition. We extend the concept to HMM training wherein some patterns may be noisy or distorted. Utilizing the concept of "virtual pattern" developed for joint evaluation, we propose selective iterative training of HMMs. Evaluating these algorithms for burst/transient noisy speech and isolated word recognition, significant improvement in recognition accuracy is obtained using the new algorithms over those which do not utilize the joint evaluation strategy.
机译:我们正在解决共同评估多种语音模式以进行自动语音识别和训练的新问题。我们提出了基于非参数动态时间规整(DTW)算法和参数隐马尔可夫模型(HMM)的解决方案。我们证明了一种混合方法对于嘈杂语音识别的应用是相当有效的。我们将概念扩展到HMM训练,其中某些模式可能会嘈杂或失真。利用为联合评估而开发的“虚拟模式”的概念,我们提出了HMM的选择性迭代训练。对这些用于突发/瞬态嘈杂语音和孤立单词识别的算法进行评估,与不使用联合评估策略的算法相比,使用新算法可显着提高识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号