首页> 外文期刊>Computer speech and language >Speaker state recognition using an HMM-based feature extraction method
【24h】

Speaker state recognition using an HMM-based feature extraction method

机译:使用基于HMM的特征提取方法的说话人状态识别

获取原文
获取原文并翻译 | 示例

摘要

In this article we present an efficient approach to modeling the acoustic features for the tasks of recognizing various paralinguistic phenomena. Instead of the standard scheme of adapting the Universal Background Model (UBM), represented by the Gaussian Mixture Model (GMM), normally used to model the frame-level acoustic features, we propose to represent the UBM by building a monophone-based Hidden Markov Model (HMM). We present two approaches: transforming the monophone-based segmented HMM-UBM to a GMM-UBM and proceeding with the standard adaptation scheme, or to perform the adaptation directly on the HMM-UBM. Both approaches give superior results than the standard adaptation scheme (GMM-UBM) in both the emotion recognition task and the alcohol detection task. Furthermore, with the proposed method we were able to achieve better results than the current state-of-the-art systems in both tasks.
机译:在本文中,我们提出了一种有效的方法来对声学特征进行建模,以实现识别各种副语言现象的任务。我们建议采用构建基于单音电话的隐马尔可夫模型来表示UBM,而不是采用通常由高斯混合模型(GMM)表示的适应通用背景模型(UBM)的标准方案,而通常由高斯混合模型(GMM)表示。型号(HMM)。我们提出两种方法:将基于单声道电话的分段式HMM-UBM转换为GMM-UBM并继续执行标准自适应方案,或者直接在HMM-UBM上进行自适应。在情绪识别任务和酒精检测任务中,这两种方法都比标准适应方案(GMM-UBM)产生了更好的结果。此外,通过所提出的方法,我们在两个任务上都能够获得比当前最先进系统更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号