首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Feature Extraction Methods for Speaker Recognition: A Review
【24h】

Feature Extraction Methods for Speaker Recognition: A Review

机译:说话人识别的特征提取方法综述

获取原文
获取原文并翻译 | 示例

摘要

This paper presents main paradigms of research for feature extraction methods to further augment the state of art in speaker recognition (SR) which has been recognized extensively in person identification for security and protection applications. Speaker recognition system (SRS) has become a widely researched topic for the last many decades. The basic concept of feature extraction methods is derived from the biological model of human auditory/vocal tract system. This work provides a classification-oriented review of feature extraction methods for SR over the last 55 years that are proven to be successful and have become the new stone to further research. Broadly, the review work is dichotomized into feature extraction methods with and without noise compensation techniques. Feature extraction methods without noise compensation techniques are divided into following categories: On the basis of high/ low level of feature extraction; type of transform; speech production/auditory system; type of feature extraction technique; time variability; speech processing techniques. Further, feature extraction methods with noise compensation techniques are classified into noise-screened features, feature normalization methods, feature compensation methods. This classification-oriented review would endow the clear vision of readers to choose among di r erent techniques and will be helpful in future research in this field.
机译:本文介绍了特征提取方法的主要研究范式,以进一步增强说话人识别(SR)的技术水平,这已在安全和保护应用的人员识别中得到广泛认可。说话人识别系统(SRS)在过去几十年中已成为广泛研究的话题。特征提取方法的基本概念源自人类听觉/声道系统的生物学模型。这项工作在过去的55年中为SR的特征提取方法提供了面向分类的综述,事实证明该方法是成功的,并成为进一步研究的新依据。概括地说,审阅工作分为具有和不具有噪声补偿技术的特征提取方法。没有噪声补偿技术的特征提取方法分为以下几类:基于特征提取的高/低水平;转换类型;语音制作/听觉系统;特征提取技术的类型;时间可变性语音处理技术。此外,利用噪声补偿技术的特征提取方法被分类为噪声屏蔽特征,特征归一化方法,特征补偿方法。这种面向分类的综述将赋予读者清晰的愿景,以便他们在不同的技术中进行选择,这将有助于该领域的未来研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号